
In this way everyone who is party to the communication knows what a design factor

(or factor of safety) of 2 means and adjusts, if necessary, the judgmental perspective.

6–17 Stochastic Analysis28

As already demonstrated in this chapter, there are a great many factors to consider in

a fatigue analysis, much more so than in a static analysis. So far, each factor has been

treated in a deterministic manner, and if not obvious, these factors are subject to vari-

ability and control the overall reliability of the results. When reliability is important,

then fatigue testing must certainly be undertaken. There is no other way. Consequently,

the methods of stochastic analysis presented here and in other sections of this book

constitute guidelines that enable the designer to obtain a good understanding of the

various issues involved and help in the development of a safe and reliable design.

In this section, key stochastic modifications to the deterministic features and equa-

tions described in earlier sections are provided in the same order of presentation. 

Endurance Limit

To begin, a method for estimating endurance limits, the tensile strength correlation
method, is presented. The ratio � = S′

e/S̄ut is called the fatigue ratio.29 For ferrous

metals, most of which exhibit an endurance limit, the endurance limit is used as a

numerator. For materials that do not show an endurance limit, an endurance strength at

a specified number of cycles to failure is used and noted. Gough30 reported the sto-

chastic nature of the fatigue ratio � for several classes of metals, and this is shown in

Fig. 6–36. The first item to note is that the coefficient of variation is of the order 0.10

to 0.15, and the distribution varies for classes of metals. The second item to note is that

Gough’s data include materials of no interest to engineers. In the absence of testing,

engineers use the correlation that � represents to estimate the endurance limit S′
e from

the mean ultimate strength S̄ut .

Gough’s data are for ensembles of metals, some chosen for metallurgical interest,

and include materials that are not commonly selected for machine parts. Mischke31

analyzed data for 133 common steels and treatments in varying diameters in rotating

bending,32 and the result was

� = 0.445d−0.107LN(1, 0.138)

where d is the specimen diameter in inches and LN(1, 0.138) is a unit lognormal vari-

ate with a mean of 1 and a standard deviation (and coefficient of variation) of 0.138. For

the standard R. R. Moore specimen,

�0.30 = 0.445(0.30)−0.107LN(1, 0.138) = 0.506LN(1, 0.138)

330 Mechanical Engineering Design

28Review Chap. 20 before reading this section.

29From this point, since we will be dealing with statistical distributions in terms of means, standard

deviations, etc. A key quantity, the ultimate strength, will here be presented by its mean value, S̄ut . This

means that certain terms that were defined earlier in terms of the minimum value of Sut will change slightly.

30In J. A. Pope, Metal Fatigue, Chapman and Hall, London, 1959.

31Charles R. Mischke, “Prediction of Stochastic Endurance Strength,” Trans. ASME, Journal of Vibration,
Acoustics, Stress, and Reliability in Design, vol. 109, no. 1, January 1987, pp. 113–122.

32Data from H. J. Grover, S. A. Gordon, and L. R. Jackson, Fatigue of Metals and Structures, Bureau of

Naval Weapons, Document NAVWEPS 00-2500435, 1960.
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Also, 25 plain carbon and low-alloy steels with Sut > 212 kpsi are described by

S′
e = 107LN(1, 0.139) kpsi

In summary, for the rotating-beam specimen,

S′
e =

⎧⎪⎨⎪⎩
0.506S̄ut LN(1, 0.138) kpsi or MPa S̄ut ≤ 212 kpsi (1460 MPa)

107LN(1, 0.139) kpsi S̄ut > 212 kpsi

740LN(1, 0.139) MPa S̄ut > 1460 MPa

(6–70)

where S̄ut is the mean ultimate tensile strength.

Equations (6–70) represent the state of information before an engineer has chosen

a material. In choosing, the designer has made a random choice from the ensemble of

possibilities, and the statistics can give the odds of disappointment. If the testing is lim-

ited to finding an estimate of the ultimate tensile strength mean S̄ut with the chosen

material, Eqs. (6–70) are directly helpful. If there is to be rotary-beam fatigue testing,

then statistical information on the endurance limit is gathered and there is no need for

the correlation above.

Table 6–9 compares approximate mean values of the fatigue ratio φ̄0.30 for several

classes of ferrous materials.

Endurance Limit Modifying Factors

A Marin equation can be written as

Se = kakbkckdkf S′
e (6–71)

where the size factor kb is deterministic and remains unchanged from that given in

Sec. 6–9. Also, since we are performing a stochastic analysis, the “reliability factor” ke

is unnecessary here.

The surface factor ka cited earlier in deterministic form as Eq. (6–20), p. 288, is

now given in stochastic form by

ka = aS̄b
ut LN(1, C) (S̄ut in kpsi or MPa) (6–72)

where Table 6–10 gives values of a, b, and C for various surface conditions.
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Table 6–9

Comparison of

Approximate Values of

Mean Fatigue Ratio for

Some Classes of Metals

Material Class φ0.30

Wrought steels 0.50 

Cast steels 0.40

Powdered steels 0.38

Gray cast iron 0.35

Malleable cast iron 0.40

Normalized nodular cast iron 0.33

Table 6–10

Parameters in Marin

Surface Condition Factor

ka � aSb
ut LN(1, C)

a Coefficient of
Surface Finish kpsi MPa b Variation, C

Ground* 1.34 1.58 −0.086 0.120

Machined or Cold-rolled 2.67 4.45 −0.265 0.058

Hot-rolled 14.5 58.1 −0.719 0.110

As-forged 39.8 271 −0.995 0.145

*Due to the wide scatter in ground surface data, an alternate function is ka = 0.878LN(1, 0.120). 

Note: Sut in kpsi or MPa.

EXAMPLE 6–16 A steel has a mean ultimate strength of 520 MPa and a machined surface. Estimate ka .

Solution From Table 6–10,

ka = 4.45(520)−0.265LN(1, 0.058)

k̄a = 4.45(520)−0.265(1) = 0.848

σ̂ka = Ck̄a = (0.058)4.45(520)−0.265 = 0.049

Answer so ka = LN(0.848, 0.049).

The load factor kc for axial and torsional loading is given by

(kc)axial = 1.23S̄−0.0778
ut LN(1, 0.125) (6–73)

(kc)torsion = 0.328S̄0.125
ut LN(1, 0.125) (6–74)

where S̄ut is in kpsi. There are fewer data to study for axial fatigue. Equation (6–73) was

deduced from the data of Landgraf and of Grover, Gordon, and Jackson (as cited earlier).

Torsional data are sparser, and Eq. (6–74) is deduced from data in Grover et al.

Notice the mild sensitivity to strength in the axial and torsional load factor, so kc in

these cases is not constant. Average values are shown in the last column of Table 6–11,

and as footnotes to Tables 6–12 and 6–13. Table 6–14 shows the influence of material

classes on the load factor kc. Distortion energy theory predicts (kc)torsion = 0.577 for

materials to which the distortion-energy theory applies. For bending, kc = LN(1, 0).
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Table 6–13

Average Marin Loading

Factor for Torsional

Load

Table 6–14

Average Marin Torsional

Loading Factor kc for

Several Materials

Material Range n k̄c σ̂kc

Wrought steels 0.52–0.69 31 0.60 0.03

Wrought Al 0.43–0.74 13 0.55 0.09

Wrought Cu and alloy 0.41–0.67 7 0.56 0.10

Wrought Mg and alloy 0.49–0.60 2 0.54 0.08

Titanium 0.37–0.57 3 0.48 0.12

Cast iron 0.79–1.01 9 0.90 0.07

Cast Al, Mg, and alloy 0.71–0.91 5 0.85 0.09

Source: The table is an extension of P. G. Forrest, Fatigue of Metals, Pergamon Press, London, 1962,

Table 17, p. 110, with standard deviations estimated from range and sample size using Table A–1 in 

J. B. Kennedy and A. M. Neville, Basic Statistical Methods for Engineers and Scientists, 3rd ed.,

Harper & Row, New York, 1986, pp. 54–55.

Table 6–11

Parameters in Marin

Loading Factor

Table 6–12

Average Marin Loading

Factor for Axial Load

Fatigue Failure Resulting from Variable Loading 333

kc � αSut
β

LN(1, C)
Mode of α Average
Loading kpsi MPa β C kc

Bending 1 1 0 0 1

Axial 1.23 1.43 −0.0778 0.125 0.85

Torsion 0.328 0.258 0.125 0.125 0.59

Sut, kpsi k*c

50 0.907

100 0.860

150 0.832

200 0.814

*Average entry 0.85.

Sut, kpsi k*c

50 0.535

100 0.583

150 0.614

200 0.636

*Average entry 0.59.
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EXAMPLE 6–17 Estimate the Marin loading factor kc for a 1–in-diameter bar that is used as follows.

(a) In bending. It is made of steel with Sut = 100LN(1, 0.035) kpsi, and the designer

intends to use the correlation S′
e = �0.30 S̄ut to predict S′

e.

(b) In bending, but endurance testing gave S′
e = 55LN(1, 0.081) kpsi.

(c) In push-pull (axial) fatigue, Sut = LN(86.2, 3.92) kpsi, and the designer intended to

use the correlation S′
e = �0.30 S̄ut .

(d) In torsional fatigue. The material is cast iron, and S′
e is known by test.

Solution (a) Since the bar is in bending,

Answer kc = (1, 0)

(b) Since the test is in bending and use is in bending,

Answer kc = (1, 0)

(c) From Eq. (6–73),

Answer (kc)ax = 1.23(86.2)−0.0778LN(1, 0.125)

k̄c = 1.23(86.2)−0.0778(1) = 0.870

σ̂kc = Ck̄c = 0.125(0.870) = 0.109

(d ) From Table 6–15, k̄c = 0.90, σ̂kc = 0.07, and

Answer Ckc = 0.07

0.90
= 0.08

The temperature factor kd is

kd = k̄dLN(1, 0.11) (6–75)

where k̄d = kd , given by Eq. (6–27), p. 291.

Finally, kf is, as before, the miscellaneous factor that can come about from a great

many considerations, as discussed in Sec. 6–9, where now statistical distributions, pos-

sibly from testing, are considered.

Stress Concentration and Notch Sensitivity

Notch sensitivity q was defined by Eq. (6–31), p. 295. The stochastic equivalent is

q = K f − 1

Kt − 1
(6–76)

where Kt is the theoretical (or geometric) stress-concentration factor, a deterministic

quantity. A study of lines 3 and 4 of Table 20–6, will reveal that adding a scalar to (or

subtracting one from) a variate x will affect only the mean. Also, multiplying (or divid-

ing) by a scalar affects both the mean and standard deviation. With this in mind, we can
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relate the statistical parameters of the fatigue stress-concentration factor K f to those of

notch sensitivity q. It follows that

q = LN
(

K̄ f − 1

Kt − 1
,

C K̄ f

Kt − 1

)
where C = CK f and

q̄ = K̄ f − 1

Kt − 1

σ̂q = C K̄ f

Kt − 1
(6–77)

Cq = C K̄ f

K̄ f − 1

The fatigue stress-concentration factor K f has been investigated more in England than in

the United States. For K̄ f , consider a modified Neuber equation (after Heywood33),

where the fatigue stress-concentration factor is given by

K̄ f = Kt

1 + 2(Kt − 1)

Kt

√
a√
r

(6–78)

where Table 6–15 gives values of 
√

a and CK f for steels with transverse holes,

shoulders, or grooves. Once K f is described, q can also be quantified using the set

Eqs. (6–77).

The modified Neuber equation gives the fatigue stress-concentration factor as

K f = K̄ f LN
(
1, CK f

)
(6–79)

Table 6–15

Heywood’s Parameter√
a and coefficients of

variation CKf for steels

EXAMPLE 6–18 Estimate K f and q for the steel shaft given in Ex. 6–6, p. 296.

Solution From Ex. 6–6, a steel shaft with Sut = 690 MPa and a shoulder with a fillet of 3 mm

was found to have a theoretical stress-concentration factor of Kt
.= 1.65. From 

Table 6–15,

√
a = 139

Sut
= 139

690
= 0.2014

√
mm

33R. B. Heywood, Designing Against Fatigue, Chapman & Hall, London, 1962.

, , Coefficient of
Notch Type Sut in kpsi Sut in MPa Variation CKf

Transverse hole 5/Sut 174/Sut 0.10

Shoulder 4/Sut 139/Sut 0.11

Groove 3/Sut 104/Sut 0.15

√
a(

√
mm)

√
a(

√
in)
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From Eq. (6–78),

K f = Kt

1 + 2(Kt − 1)

Kt

√
a√
r

= 1.65

1 + 2(1.65 − 1)

1.65

0.2014√
3

= 1.51

which is 2.5 percent lower than what was found in Ex. 6–6.

From Table 6–15, CK f = 0.11. Thus from Eq. (6–79),

Answer K f = 1.51 LN(1, 0.11)

From Eq. (6–77), with Kt = 1.65

q̄ = 1.51 − 1

1.65 − 1
= 0.785

Cq = CK f K̄ f

K̄ f − 1
= 0.11(1.51)

1.51 − 1
= 0.326

σ̂q = Cqq̄ = 0.326(0.785) = 0.256

So,

Answer q = LN(0.785, 0.256)

EXAMPLE 6–19 The bar shown in Fig. 6–37 is machined from a cold-rolled flat having an ultimate

strength of Sut = LN(87.6, 5.74) kpsi. The axial load shown is completely reversed.

The load amplitude is Fa = LN(1000, 120) lbf.

(a) Estimate the reliability.

(b) Reestimate the reliability when a rotating bending endurance test shows that S′
e =

LN(40, 2) kpsi.

Solution (a) From Eq. (6–70), S′
e = 0.506S̄ut LN(1, 0.138) = 0.506(87.6)LN(1, 0.138)

= 44.3LN(1, 0.138) kpsi

From Eq. (6–72) and Table 6–10,

ka = 2.67S̄−0.265
ut LN(1, 0.058) = 2.67(87.6)−0.265LN(1, 0.058)

= 0.816LN(1, 0.058)

kb = 1 (axial loading)

3
4
 -in D.

3
16

-in R.

in

1
4

2 in 1
2

1 in

1
4

1000 lbf 1000 lbf

Figure 6–37
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From Eq. (6–73),

kc = 1.23S̄−0.0778
ut LN(1, 0.125) = 1.23(87.6)−0.0778LN(1, 0.125)

= 0.869LN(1, 0.125)

kd = k f = (1, 0)

The endurance strength, from Eq. (6–71), is

Se = kakbkckdk f S′
e

Se = 0.816LN(1, 0.058)(1)0.869LN(1, 0.125)(1)(1)44.3LN(1, 0.138)

The parameters of Se are

S̄e = 0.816(0.869)44.3 = 31.4 kpsi

CSe = (0.0582 + 0.1252 + 0.1382)1/2 = 0.195

so Se = 31.4LN(1, 0.195) kpsi.

In computing the stress, the section at the hole governs. Using the terminology

of Table A–15–1 we find d/w = 0.50, therefore Kt
.= 2.18. From Table 6–15,√

a = 5/Sut = 5/87.6 = 0.0571 and Ck f = 0.10. From Eqs. (6–78) and (6–79) with
r = 0.375 in,

K f = Kt

1 + 2(Kt − 1)

Kt

√
a√
r

LN
(
1, CK f

) = 2.18

1 + 2(2.18 − 1)

2.18

0.0571√
0.375

LN(1, 0.10)

= 1.98LN(1, 0.10)

The stress at the hole is

� = K f
F
A

= 1.98LN(1, 0.10)
1000LN(1, 0.12)

0.25(0.75)

σ̄ = 1.98
1000

0.25(0.75)
10−3 = 10.56 kpsi

Cσ = (0.102 + 0.122)1/2 = 0.156

so stress can be expressed as � = 10.56LN(1, 0.156) kpsi.34

The endurance limit is considerably greater than the load-induced stress, indicat-

ing that finite life is not a problem. For interfering lognormal-lognormal distributions,

Eq. (5–43), p. 250, gives

z = −
ln

(
S̄e

σ̄

√
1 + C2

σ

1 + C2
Se

)
√

ln
[(

1 + C2
Se

) (
1 + C2

σ

)] = −
ln

⎛⎝ 31.4

10.56

√
1 + 0.1562

1 + 0.1952

⎞⎠
√

ln[(1 + 0.1952)(1 + 0.1562)]
= −4.37

From Table A–10 the probability of failure pf = �(−4.37) = .000 006 35, and the

reliability is

Answer R = 1 − 0.000 006 35 = 0.999 993 65

34Note that there is a simplification here. The area is not a deterministic quantity. It will have a statistical

distribution also. However no information was given here, and so it was treated as being deterministic.
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(b) The rotary endurance tests are described by S′
e = 40LN(1, 0.05) kpsi whose mean

is less than the predicted mean in part a. The mean endurance strength S̄e is

S̄e = 0.816(0.869)40 = 28.4 kpsi

CSe = (0.0582 + 0.1252 + 0.052)1/2 = 0.147

so the endurance strength can be expressed as Se = 28.3LN(1, 0.147) kpsi. From

Eq. (5–43),

z = −
ln

⎛⎝ 28.4

10.56

√
1 + 0.1562

1 + 0.1472

⎞⎠
√

ln[(1 + 0.1472)(1 + 0.1562)]
= −4.65

Using Table A–10, we see the probability of failure pf = �(−4.65) = 0.000 001 71,

and

R = 1 − 0.000 001 71 = 0.999 998 29

an increase! The reduction in the probability of failure is (0.000 001 71 − 0.000

006 35)/0.000 006 35 = −0.73, a reduction of 73 percent. We are analyzing an existing

design, so in part (a) the factor of safety was n̄ = S̄/σ̄ = 31.4/10.56 = 2.97. In part (b)
n̄ = 28.4/10.56 = 2.69, a decrease. This example gives you the opportunity to see the role

of the design factor. Given knowledge of S̄, CS, σ̄, Cσ , and reliability (through z), the mean

factor of safety (as a design factor) separates S̄ and σ̄ so that the reliability goal is achieved.

Knowing n̄ alone says nothing about the probability of failure. Looking at n̄ = 2.97 and
n̄ = 2.69 says nothing about the respective probabilities of failure. The tests did not reduce
S̄e significantly, but reduced the variation CS such that the reliability was increased.

When a mean design factor (or mean factor of safety) defined as S̄e/σ̄ is said to

be silent on matters of frequency of failures, it means that a scalar factor of safety

by itself does not offer any information about probability of failure. Nevertheless,

some engineers let the factor of safety speak up, and they can be wrong in their

conclusions.

338 Mechanical Engineering Design

As revealing as Ex. 6–19 is concerning the meaning (and lack of meaning) of a

design factor or factor of safety, let us remember that the rotary testing associated with

part (b) changed nothing about the part, but only our knowledge about the part. The

mean endurance limit was 40 kpsi all the time, and our adequacy assessment had to

move with what was known.

Fluctuating Stresses

Deterministic failure curves that lie among the data are candidates for regression mod-

els. Included among these are the Gerber and ASME-elliptic for ductile materials, and,

for brittle materials, Smith-Dolan models, which use mean values in their presentation.

Just as the deterministic failure curves are located by endurance strength and ultimate

tensile (or yield) strength, so too are stochastic failure curves located by Se and by Sut

or Sy . Figure 6–32, p. 320, shows a parabolic Gerber mean curve. We also need to

establish a contour located one standard deviation from the mean. Since stochastic
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curves are most likely to be used with a radial load line we will use the equation given

in Table 6–7, p. 307, expressed in terms of the strength means as 

S̄a = r2 S̄2
ut

2S̄e

⎡⎣−1 +
√

1 +
(

2S̄e

r S̄ut

)2
⎤⎦ (6–80)

Because of the positive correlation between Se and Sut , we increment S̄e by CSe S̄e , S̄ut

by CSut S̄ut , and S̄a by CSa S̄a , substitute into Eq. (6–80), and solve for CSa to obtain

CSa = (1 + CSut)
2

1 + CSe

⎧⎨⎩−1 +
√

1 +
[

2S̄e(1 + CSe)

r S̄ut(1 + CSut)

]2
⎫⎬⎭⎡⎣−1 +

√
1 +

(
2S̄e

r S̄ut

)2
⎤⎦ − 1 (6–81)

Equation (6–81) can be viewed as an interpolation formula for CSa , which falls between
CSe and CSut depending on load line slope r. Note that Sa = S̄aLN(1, CSa).

Similarly, the ASME-elliptic criterion of Table 6–8, p. 308, expressed in terms of

its means is

S̄a = r S̄y S̄e√
r2 S̄2

y + S̄2
e

(6–82)

Similarly, we increment S̄e by CSe S̄e , S̄y by CSy S̄y , and S̄a by CSa S̄a , substitute into

Eq. (6–82), and solve for CSa :

CSa = (1 + CSy)(1 + CSe)

√√√√ r2 S̄2
y + S̄2

e

r2 S̄2
y(1 + CSy)2 + S̄2

e (1 + CSe)2
− 1 (6–83)

Many brittle materials follow a Smith-Dolan failure criterion, written deterministi-

cally as

nσa

Se
= 1 − nσm/Sut

1 + nσm/Sut
(6–84)

Expressed in terms of its means,

S̄a

S̄e
= 1 − S̄m/S̄ut

1 + S̄m/S̄ut
(6–85)

For a radial load line slope of r, we substitute S̄a/r for S̄m and solve for S̄a , obtaining

S̄a = r S̄ut + S̄e

2

⎡⎣−1 +
√

1 + 4r S̄ut S̄e

(r S̄ut + S̄e)2

⎤⎦ (6–86)

and the expression for CSa is

CSa = r S̄ut(1 + CSut) + S̄e(1 + CSe)

2S̄a

·
{

−1 +
√

1 + 4r S̄ut S̄e(1 + CSe)(1 + CSut)

[r S̄ut(1 + CSut) + S̄e(1 + CSe)]2

}
− 1

(6–87)
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EXAMPLE 6–20 A rotating shaft experiences a steady torque T = 1360LN(1, 0.05) lbf · in, and at a

shoulder with a 1.1-in small diameter, a fatigue stress-concentration factor K f =
1.50LN(1, 0.11), K f s = 1.28LN(1, 0.11), and at that location a bending moment of
M = 1260LN(1, 0.05) lbf · in. The material of which the shaft is machined is hot-rolled

1035 with Sut = 86.2LN(1, 0.045) kpsi and Sy = 56.0LN(1, 0.077) kpsi. Estimate the

reliability using a stochastic Gerber failure zone.

Solution Establish the endurance strength. From Eqs. (6–70) to (6–72) and Eq. (6–20), p. 288,

S′
e = 0.506(86.2)LN(1, 0.138) = 43.6LN(1, 0.138) kpsi

ka = 2.67(86.2)−0.265LN(1, 0.058) = 0.820LN(1, 0.058)

kb = (1.1/0.30)−0.107 = 0.870

kc = kd = k f = LN(1, 0)

Se = 0.820LN(1, 0.058)0.870(43.6)LN(1, 0.138)

S̄e = 0.820(0.870)43.6 = 31.1 kpsi

CSe = (0.0582 + 0.1382)1/2 = 0.150

and so Se = 31.1LN(1, 0.150) kpsi.

Stress (in kpsi):

σa = 32K f Ma

πd3
= 32(1.50)LN(1, 0.11)1.26LN(1, 0.05)

π(1.1)3

σ̄a = 32(1.50)1.26

π(1.1)3
= 14.5 kpsi

Cσa = (0.112 + 0.052)1/2 = 0.121

�m = 16K f sTm

πd3
= 16(1.28)LN(1, 0.11)1.36LN(1, 0.05)

π(1.1)3

τ̄m = 16(1.28)1.36

π(1.1)3
= 6.66 kpsi

Cτm = (0.112 + 0.052)1/2 = 0.121

σ̄ ′
a = (

σ̄ 2
a + 3τ̄ 2

a

)1/2 = [14.52 + 3(0)2]1/2 = 14.5 kpsi

σ̄ ′
m = (

σ̄ 2
m + 3τ̄ 2

m

)1/2 = [0 + 3(6.66)2]1/2 = 11.54 kpsi

r = σ̄ ′
a

σ̄ ′
m

= 14.5

11.54
= 1.26

Strength: From Eqs. (6–80) and (6–81),

S̄a = 1.26286.22

2(31.1)

⎧⎨⎩−1 +
√

1 +
[

2(31.1)

1.26(86.2)

]2

⎫⎬⎭ = 28.9 kpsi
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CSa = (1 + 0.045)2

1 + 0.150

−1 +
√

1 +
[

2(31.1)(1 + 0.15)

1.26(86.2)(1 + 0.045)

]2

−1 +
√

1 +
[

2(31.1)

1.26(86.2)

]2
− 1 = 0.134

Reliability: Since Sa = 28.9LN(1, 0.134) kpsi and �′
a = 14.5LN(1, 0.121) kpsi,

Eq. (5–43), p. 250, gives

z = −
ln

(
S̄a

σ̄a

√
1 + C2

σa

1 + C2
Sa

)
√

ln
[(

1 + C2
Sa

) (
1 + C2

σa

)] = −
ln

⎛⎝28.9

14.5

√
1 + 0.1212

1 + 0.1342

⎞⎠
√

ln[(1 + 0.1342)(1 + 0.1212)]
= −3.83

From Table A–10 the probability of failure is pf = 0.000 065, and the reliability is,

against fatigue,

Answer R = 1 − pf = 1 − 0.000 065 = 0.999 935

The chance of first-cycle yielding is estimated by interfering Sy with �′
max. The

quantity �′
max is formed from �′

a + �′
m . The mean of �′

max is σ̄ ′
a + σ̄ ′

m = 14.5 +
11.54 = 26.04 kpsi. The coefficient of variation of the sum is 0.121, since both

COVs are 0.121, thus Cσ max = 0.121. We interfere Sy = 56LN(1, 0.077) kpsi with
�′

max = 26.04LN (1, 0.121) kpsi. The corresponding z variable is

z = −
ln

⎛⎝ 56

26.04

√
1 + 0.1212

1 + 0.0772

⎞⎠
√

ln[(1 + 0.0772)(1 + 0.1212)]
= −5.39

which represents, from Table A–10, a probability of failure of approximately 0.07358

[which represents 3.58(10−8)] of first-cycle yield in the fillet.

The probability of observing a fatigue failure exceeds the probability of a yield

failure, something a deterministic analysis does not foresee and in fact could lead one

to expect a yield failure should a failure occur. Look at the �′
aSa interference and the

�′
maxSy interference and examine the z expressions. These control the relative proba-

bilities. A deterministic analysis is oblivious to this and can mislead. Check your sta-

tistics text for events that are not mutually exclusive, but are independent, to quantify

the probability of failure:

pf = p(yield) + p(fatigue) − p(yield and fatigue)

= p(yield) + p(fatigue) − p(yield)p(fatigue)

= 0.358(10−7) + 0.65(10−4) − 0.358(10−7)0.65(10−4) = 0.650(10−4)

R = 1 − 0.650(10−4) = 0.999 935

against either or both modes of failure.
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342 Mechanical Engineering Design

Examine Fig. 6–38, which depicts the results of Ex. 6–20. The problem distribution

of Se was compounded of historical experience with S′
e and the uncertainty manifestations

due to features requiring Marin considerations. The Gerber “failure zone” displays this.

The interference with load-induced stress predicts the risk of failure. If additional infor-

mation is known (R. R. Moore testing, with or without Marin features), the stochastic

Gerber can accommodate to the information. Usually, the accommodation to additional

test information is movement and contraction of the failure zone. In its own way the sto-

chastic failure model accomplishes more precisely what the deterministic models and

conservative postures intend. Additionally, stochastic models can estimate the probability

of failure, something a deterministic approach cannot address.

The Design Factor in Fatigue

The designer, in envisioning how to execute the geometry of a part subject to the imposed

constraints, can begin making a priori decisions without realizing the impact on the

design task. Now is the time to note how these things are related to the reliability goal.

The mean value of the design factor is given by Eq. (5–45), repeated here as

n̄ = exp

[
−z

√
ln

(
1 + C2

n

) + ln
√

1 + C2
n

]
.= exp[Cn(−z + Cn/2)] (6–88)

in which, from Table 20–6 for the quotient n = S/�,

Cn =
√

C2
S + C2

σ

1 + C2
σ

where CS is the COV of the significant strength and Cσ is the COV of the significant

stress at the critical location. Note that n̄ is a function of the reliability goal (through z)

and the COVs of the strength and stress. There are no means present, just measures

of variability. The nature of CS in a fatigue situation may be CSe for fully reversed

loading, or CSa otherwise. Also, experience shows CSe > CSa > CSut , so CSe can be

used as a conservative estimate of CSa . If the loading is bending or axial, the form of
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Figure 6–38

Designer’s fatigue diagram

for Ex. 6–20.
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�′
a might be

�′
a = K f

Mac

I
or �′

a = K f
F
A

respectively. This makes the COV of �′
a , namely Cσ ′

a
, expressible as

Cσ ′
a
= (

C2
K f + C2

F

)1/2

again a function of variabilities. The COV of Se, namely CSe , is

CSe = (
C2

ka + C2
kc + C2

kd + C2
k f + C2

Se′
)1/2

again, a function of variabilities. An example will be useful.

EXAMPLE 6–21 A strap to be made from a cold-drawn steel strip workpiece is to carry a fully reversed

axial load F = LN(1000, 120) lbf as shown in Fig. 6–39. Consideration of adjacent

parts established the geometry as shown in the figure, except for the thickness t. Make a

decision as to the magnitude of the design factor if the reliability goal is to be 0.999 95,

then make a decision as to the workpiece thickness t.

Solution Let us take each a priori decision and note the consequence:

These eight a priori decisions have quantified the mean design factor as n̄ = 2.65.

Proceeding deterministically hereafter we write

σ ′
a = S̄e

n̄
= K̄ f

F̄

(w − d)t

from which

t = K̄ f n̄ F̄

(w − d)S̄e
(1)

A Priori Decision Consequence

Use 1018 CD steel S̄ut = 87.6 kpsi, CSut = 0.0655

Function: 

Carry axial load CF = 0.12, Ckc = 0.125

R ≥ 0.999 95 z = �3.891 

Machined surfaces Cka = 0.058

Hole critical CKf = 0.10, C��a� (0.102 � 0.122)1/2 = 0.156

Ambient temperature Ckd = 0

Correlation method CS�e = 0.138

Hole drilled CSe = (0.0582 + 0.1252 + 0.1382)1/2 = 0.195

Cn =
√√√√C2

Se + C2
σ ′

a

1 + C2
σ ′

a

=
√

0.1952 + 0.1562

1 + 0.1562
= 0.2467

n̄ = exp
[
− (−3.891)

√
ln(1 + 0.24672) + ln

√
1 + 0.24672

]
= 2.65

3

8
-in D. drill

Fa = 1000 lbf

Fa = 1000 lbf

3
4 in

Figure 6–39

A strap with a thickness t is

subjected to a fully reversed

axial load of 1000 lbf. 

Example 6–21 considers the

thickness necessary to attain a

reliability of 0.999 95 against

a fatigue failure.
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To evaluate the preceding equation we need S̄e and K̄ f . The Marin factors are

ka = 2.67S̄−0.265
ut LN(1, 0.058) = 2.67(87.6)−0.265LN(1, 0.058)

k̄a = 0.816

kb = 1

kc = 1.23S̄−0.078
ut LN(1, 0.125) = 0.868LN(1, 0.125)

k̄c = 0.868

k̄d = k̄ f = 1

and the endurance strength is

S̄e = 0.816(1)(0.868)(1)(1)0.506(87.6) = 31.4 kpsi

The hole governs. From Table A–15–1 we find d/w = 0.50, therefore Kt = 2.18. From

Table 6–15 
√

a = 5/S̄ut = 5/87.6 = 0.0571, r = 0.1875 in. From Eq. (6–78) the

fatigue stress-concentration factor is

K̄ f = 2.18

1 + 2(2.18 − 1)

2.18

0.0571√
0.1875

= 1.91

The thickness t can now be determined from Eq. (1)

t ≥ K̄ f n̄ F̄

(w − d)Se
= 1.91(2.65)1000

(0.75 − 0.375)31 400
= 0.430 in

Use 1
2
-in-thick strap for the workpiece. The 1

2
-in thickness attains and, in the rounding

to available nominal size, exceeds the reliability goal.

The example demonstrates that, for a given reliability goal, the fatigue design factor

that facilitates its attainment is decided by the variabilities of the situation. Furthermore,

the necessary design factor is not a constant independent of the way the concept unfolds.

Rather, it is a function of a number of seemingly unrelated a priori decisions that are made

in giving definition to the concept. The involvement of stochastic methodology can be

limited to defining the necessary design factor. In particular, in the example, the design

factor is not a function of the design variable t; rather, t follows from the design factor.

6–18 Road Maps and Important Design Equations 
for the Stress-Life Method
As stated in Sec. 6–15, there are three categories of fatigue problems. The important

procedures and equations for deterministic stress-life problems are presented here.

Completely Reversing Simple Loading

1 Determine S′
e either from test data or

p. 282 S′
e =

⎧⎪⎨⎪⎩
0.5Sut Sut ≤ 200 kpsi (1400 MPa)

100 kpsi Sut > 200 kpsi

700 MPa Sut > 1400 MPa

(6–8)
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