Principles of Human Neuropsychology
To three who inspired me:

Gregg Rains, to be curious about the wonders of the universe
Rita Rains, to recognize the compass of my reaching
Mary Rains, to grasp the meaning of it all
I wrote this book because I wanted my students to have access to an account of neuropsychology that was at once clear and in-depth. I wanted them to experience the sense of wonder that I have felt since I first became captivated by this field 25 years ago. It seemed to me that the way to do this was to create a text that, without overwhelming the student, would provide sufficient detail and depth of treatment to kindle a sense of wonder and to whet the appetite for further forays into this at-once most mysterious and most intimate of all domains of science. An in-depth treatment achieves this end, it seems to me, by paradoxically making the material easier to grasp by offering deeper explanation. And, of course, a by-product of a deeper understanding is the even more exciting revelation of the questions that remain to be answered. The search for ways to achieve these ends has guided the writing of this book.

The other guiding principle has been the essential unity of knowledge and, particularly in a domain as fraught with difficult problems as neuropsychology, the necessity of integrating insights gleaned from widely disparate levels of analysis. Although the continually expanding breadth of the neurosciences demands that any single book focus its attention, adhering to the perspective of a single level of analysis runs the risk of providing only a two-dimensional view of brain-behavior relationships. One of my central objectives has been to provide the reader with the in-depth view that is possible when the attempt is made to integrate the perspectives afforded by different disciplines and the data derived from different levels of analysis. One of the most exciting results of this integrative attempt is the often stunning degree to which findings derived from different levels of analysis inform and illuminate each other, and I have tried to share this excitement with my readers. We have moved far beyond the time when the reports of different levels of analysis seem like the isolated reports of the many blind men feeling different parts of the proverbial elephant; we are beginning to integrate different levels of understanding into a coherent representation of the animal itself.

Part I: Foundations

The first three chapters of this text approach neuropsychology from three different levels. Chapter 1 provides an overview of neuropsychology in the context of its historical development. In addition to serving as a general introduction to the field, this chapter offers insights into the processes underlying the development of our understanding of brain-behavior relationships. These processes are always at work in any evolving field. A consideration of their influence in the past sheds light on how future developments are likely to unfold.

Chapter 2, Neural Mechanisms at the Molecular and Cellular Levels, approaches the function of the nervous system at the micro level. This has great intrinsic interest because much has been learned in recent years about events at these levels. The chapter’s examination of the ways in which neurons interact also provides insight into the integrative function of the nervous system as a whole. The discussion of
recently elucidated neuronal mechanisms of simple forms of learning in relatively uncomplicated organisms that concludes the chapter serves as an example of how the principles derived from investigations into processes at the micro level can be applied to psychological functions on a more molar level. In doing this, it also previews the kinds of explanation of other cognitive processes that may be possible in the future.

Chapter 3, Introduction to the Structure and Function of the Nervous System, introduces the basic structures of the nervous system and discusses general aspects of their function. In addition to providing information that is critical for understanding material in subsequent chapters, this chapter surveys the relationship between gross anatomical structures and behavior.

Chapter 4, Methods in Neuropsychology, provides information about how insight into and understanding of brain-behavior relationships is achieved. The answers to our questions are inextricable from the methods we use to ask them. A thorough grounding in and appreciation of methodology is thus essential to an understanding of the current state of neuropsychology and its probable future directions. The methods reviewed in this chapter range from the most recent advances in PET, fMRI, and magnetoencephalography to classical methods employed to study the effect of cerebral lesions on behavior and psychological functioning. An emphasis is placed on the importance—or rather, the necessity—of applying a wide range of methods in our attempts to approach an integrated understanding of the relationship between brain and behavior.

Chapter 5, The Visual System as a Model of Nervous System Functioning, integrates the levels of analysis and approach addressed in the first four chapters. It does this by examining the most completely understood system of the brain, the visual system, at a number of different levels. Knowledge in this area has been expanding at an ever-increasing pace in recent years as new techniques and research strategies have been aimed at unlocking the mysteries of the visual brain. This chapter focuses on recent findings at a variety of levels, from the study of the individual neuron and small populations of neurons, to the anatomical microstructure of the visual cortex, and the gross anatomy of the visual system. The combination of these levels of approach reveals the elegant segregation—both anatomical and functional—inherent in the magnocellular and parvocellular streams, as well as the remarkable localization of specific visual function within selected regions of the extrastriate cortex.

In addition to providing information about the neuropsychology of an important and relatively well understood functional system, chapter 5 also provides a model of how several different levels of analysis can be integrated into a comprehensive understanding. In doing this, it serves as a preview of the kind of understanding of other brain systems that will some day be achieved and that is already in the process of evolving.

Part II: Neuropsychology of Major Functional Systems

The seven chapters of Part II (chapters 6–12) address the major domains of higher functioning: language, spatial processing, visual recognition, voluntary action, memory, emotion, and the higher-order regulation of behavior by the prefrontal cortex.

Language, perhaps the most exclusively human function, is also the first functional domain to be localized in specific regions of the cerebral cortex—a discovery that ushered in the modern era of neuropsychology. Chapter 6 surveys the investigation of the neural basis of language from Broca’s classical findings to the use of recently developed functional imaging techniques that have revealed areas of brain involved in relatively complex linguistic processes, such as word generation. These recent findings have suggested an unexpected modularity of function in the neural mechanisms underlying language.

Analogously, chapter 7’s survey of spatial processing emphasizes how the insights revealed by early lesion studies have been extended by such findings as the recent discovery of single cells in the hippocampus that fire when an animal is in a specific location and location-specific attention-enhanced
cells in monkey parietal cortex. This extension of classical findings implicating these two regions in aspects of spatial processing to findings on the level of the single neuron suggests that we may be approaching an integrated understanding of spatial processing, an understanding nourished by data from widely disparate levels of analysis. Also highly illuminating is recent work indicating that the same structures mediating visual perceptual processing may also underlie visual imagery and that the two hemispheres are specialized with regard to the ways in which they process images. These were unexpected findings, and they hold promise for further understanding of the relationship between visual perception and visual thought processes.

The recurring theme of attempts to achieve understanding through the convergence of findings from disparate levels of analysis also pervades the remaining chapters in part II. In chapter 8, we examine visual agnosia, first identifying problems with classical theories of visual recognition and then examining how recent theories attempt to resolve these problems. In particular, recent massively parallel constraint-satisfaction models of object recognition are reviewed, as are the most recent neurobiologically based conceptualizations of visual agnosia. These constitute two explanatory approaches based on widely different levels of analysis. For the present, the possibility of integrating the two approaches into a unified understanding remains remote, although a satisfactory account of visual recognition will eventually have to draw on data and conceptualizations from the levels of explanation addressed by both of these theories.

The leitmotif of understanding through converging levels of analysis also pervades the remaining chapters dealing with the major functional systems. In the discussion of voluntary action (chapter 9), data from classical studies on the effect of cerebral lesions on movement are interfaced with current advances in the neurophysiology of movement. For example, the recent use of studies simultaneously recording from more than 100 single neurons in the motor cortex has revealed a stunning distribution of function in that region, a distribution that helps to explain the extremely high correlation between actual and intended movement in persons without brain lesions and the disruption of that correlation after lesions of motor cortex. Analogously, as we see in chapter 10, single-unit recording in prefrontal cortex has revealed neurons that are intimately involved in the neural processes underlying spatial working memory. This discovery of individual neuronal activity correlated with memory processes is among the most exciting recent advances in the understanding of the neural basis of higher cognitive processes.

Although sometimes neglected in accounts of brain-behavior relationships, emotion is clearly an important, if enigmatic, domain of psychological functioning. In the examination of emotion in chapter 11, we first discuss classical theories of the relationship between brain and emotion and then proceed to see how these have been superseded by more recent advances. In particular, recent investigations into the neural basis of learned fear have not only provided further support for the notion that the amygdala plays a central role in emotional response, they have also made significant progress in elucidating the neural mechanisms through which the amygdala exercises this role.

As one explores each of the major functional domains, one must eventually confront the problem of the highest level of control within that domain, a level frequently referred to as executive function. Although there is a separate chapter on executive function (chapter 12), the text also addresses the problem of executive function within each chapter, in the context of the domain under consideration. This allows the reader to view executive function in the context of the functions that are its tangible manifestations, rather than presenting it as a rarefied function isolated from specific functional domains.

Chapter 12 examines aspects of prefrontal cortex and the higher-order regulation of behavior. Humans suffer an extremely broad range of symptoms after prefrontal lesions, and these are reviewed in some detail with an eye toward bringing some conceptual coherence to their apparently bewildering range. The latter part of this chapter considers the hypothesis
that the essence of prefrontal function is the guidance of behavior by representational knowledge. True to the theme of converging levels of analysis, this discussion focuses on recent advances in devising an animal model of prefrontal function. This makes possible investigations on the anatomical, physiological, and behavioral levels that would not be possible with human subjects. The data from human subjects with prefrontal lesions, taken together with those derived from the animal models, emphasize once again how different levels of analysis inform each other. This approach also makes possible the beginning of a coherent picture of the neural basis of prefrontal function.

Part III: The Application of Neuropsychology to Broad Behavioral Domains: Psychopathology, Developmental Neuropsychology, and Recovery of Function

The three chapters in part III address areas of application of neuropsychology: psychopathology, developmental neuropsychology, and recovery of function. Currently there is a great deal of investigative work in the neuropsychology of psychopathology (chapter 13), particularly schizophrenia. In this disorder—or, more aptly, this spectrum of disorders—a wide range of neurobiological correlates have been identified. Of particular interest are recent findings of specific metabolic abnormalities in prefrontal cortex during tasks, such as the Wisconsin Card Sorting Test, that tap the functional capacity of this area. This combination of functional imaging and neuropsychological measures appears to be an extremely promising research strategy for future attempts to elucidate biological factors in schizophrenia as well as other psychiatric disorders.

The chapter on developmental neuropsychology (chapter 14), in addition to reviewing the almost miraculous events involved in the development of the nervous system, focuses on recent attempts to infer the course of development of different brain systems from the course of development of function. From this perspective, chapter 14 reviews recent work in the development of visual function, executive function, and language. It also surveys recent advances in our understanding of developmental abnormalities, both those in which considerable progress in understanding the cause has been made and those in which causal factors remain obscure.

Chapter 15 considers recovery of function, including the factors that affect recovery and the neural mechanisms that have been shown to underlie it. Particular attention is paid to the development of therapeutic approaches to the consequences of brain lesions. Of special interest are recent advances in the development of compensatory interventions, such as strategies that utilize intact implicit memory in severely amnesic patients to enhance their capacity for adaptive functioning.

Epilogue

Finally, the Epilogue considers philosophical issues in neuropsychology, particularly the issue of whether psychological and behavioral processes can be reduced to more micro levels. It presents a case for the possibility of such reduction. More generally, the chapter provides a broad context for considering issues in the relationship between brain and behavior that are implicit in earlier discussions. In addition, the Epilogue is intended to provide a more formal argument for what has been a central theme of this book: the virtue, if not the necessity, of striving for an understanding of brain-behavior relationships derived from the integration of different (and often seemingly incommensurable) levels of analysis. This is an understanding that to date has been most fully realized in our current understanding of the visual system. Yet, as the pages of this book testify, it is a goal toward which progress is being made in all domains of functioning.

Pedagogical Features

Each chapter begins with a chapter outline to help orient the reader and ends with a summary that touches on the central content of the chapter. Captions are often extensive, supplementing descriptions in the body of the text. Major terms are boldfaced and defined both in the context of the discussion and in a glossary at the end of the book.
Complete references to cited studies will hopefully encourage students to embark on the direct exploration of published research, an endeavor always rewarded by more intimate understanding.

Supplementary Materials

There is a student web site for the book at www.mhhe.com/rains. Matt Heinly, one of my former students, who possesses an intense passion for neuropsychology, helped develop the web site. Matt’s ability to locate interesting web sites is matched only by his ability to locate restaurants that serve the finest and largest steaks. The web site also includes review questions and key terms and definitions for each chapter.

Melvyn King of the State University of New York at Cortland and Debra Clark, a neuropsychologist in private practice, have prepared a test bank that includes multiple-choice, fill-in, true-false, and essay questions for all chapters.

Acknowledgments

A project of this magnitude is the product of many influences going far back in time. While it is impossible to mention all of the early influences, I mention some of them here. Thomas McDonald of St. John’s College inspired a love of intellectual exploration and adventure that has never left me. Many at Cornell University were inspiring and guiding during my time as a graduate student there, including Barbara Finlay, Ulrick Neisser, Frank Keil, Eleanor Gibson, and J. J. Gibson. During my neuropsychology internship, at Upstate Medical Center in Syracuse, I was able to learn from John Wolf, who had an exuberant passion for brain dissection and neurological diagnosis, even at 6 a.m.

During my years in Montreal, Frank Greene, at the McGill University Reading Centre, was helpful and supportive in many ways. In the process of conducting my thesis research at the Montreal Neurological Institute, I had the good fortune to work with a number of extraordinarily talented people who were also passionate about neuropsychology. I shared an office with Gus Buchtel, always encouraging and energizing, as were Gabriel Leonard, Enda McGovern, and Laughlin Taylor. I spent many hours in dialogue with Michael Patrides, whose love of all things neuropsychological is contagious and whose energy for conversation about the mysteries of the brain is inexhaustible. I feel deep gratitude to Brenda Milner, my thesis advisor, who made work in Montreal possible and whose indefatigable passion for neuropsychology and impeccable investigation of its mysteries has served as an inspiration for me, as it does for so many throughout the world. I also owe an enormous debt of gratitude to all the patients in Montreal, and later at Friends Hospital in Philadelphia, from whom I have learned so much.

I would like to thank the following reviewers for their valuable suggestions: Gary G. Berntson, Ohio State University; Erin D. Bigler, Brigham Young University; Sarah Creem, University of Utah; Philip S. Fastenau, Indiana University–Purdue University, Indianapolis; Gary Groth-Marnat, Cal Poly, San Luis Obispo; Phillip J. Holcomb, Tufts University; Stephen W. Keifer, Kansas State University; John P. Kline, Eastern Washington University; Charles Long, University of Memphis; Mark E. McCourt, North Dakota State University; James D. Rose, University of Wyoming; Paula K. Scheir, University of Cincinnati; Michael J. Selby, California State University, San Luis Obispo; Robert Solso, Ohio State University; and Joseph E. Steinmetz, Indiana University.

I would not have begun writing this book in earnest had it not been for the loving persistence of Ray Conlon and Anne Conlon who, in the first hours of 1995, insisted that we leave the kitchen table, go into my study, and write a cover letter to prospective publishers to introduce the early draft chapters I had composed at that point. Frank Graham, my sponsoring editor, was encouraging and constructively challenging throughout the writing process and into the early stages of production, before his retirement. Ken King, who took up the torch from Frank, had many excellent ideas that made the book a better one. Beverley DeWitt did wonderful copyediting, respecting my voice, while finding and fixing all problems. Rennie Evans and Robin Mouat did a superb job with the art, flexibly modifying early versions of figures until they were just right.
The book’s production editors, Deneen Sedlack, Carla Kirschenbaum, and Melissa Williams, all guided the production expertly and were a delight to work with, as were all the other members of the Mayfield and McGraw-Hill team.

Thanks to my wife, Mary, and my two sons, Brendan and Jesse, for their encouragement and for their tolerance during what must have felt like an interminable process. More than they can ever know, they gave me the courage and the purpose to write this book.
Brief Contents

PART I: Foundations
CHAPTER 1 The Historical Development of Neuropsychology 1
CHAPTER 2 Neural Mechanisms at the Molecular and Cellular Levels 18
CHAPTER 3 Introduction to the Structure and Function of the Nervous System 45
CHAPTER 4 Methods in Neuropsychology 72
CHAPTER 5 The Visual System as a Model of Nervous System Functioning 93

PART II: Neuropsychology of Major Functional Systems
CHAPTER 6 Language 128
CHAPTER 7 Spatial Processing 157
CHAPTER 8 Visual Recognition 194
CHAPTER 9 Voluntary Action 226
CHAPTER 10 Memory Systems 255
CHAPTER 11 Emotion 302
CHAPTER 12 The Prefrontal Cortex and the Higher-Order Regulation of Behavior 339

PART III: The Application of Neuropsychology to Broad Behavioral Domains
CHAPTER 13 Psychopathology 379
CHAPTER 14 Developmental Neuropsychology 411
CHAPTER 15 Recovery of Function 442

Epilogue 456
Glossary 465
Bibliography 509
Credits 547
Index 553
Preface v

PART I: Foundations

CHAPTER 1 The Historical Development of Neuropsychology 1

Early Attempts at Understanding the Brain 2
The Brain Hypothesis 2
The Problem of Localization of Function 5

The Beginnings of Modern Neuropsychology: Broca 8
Antecedents to Broca: Gall and Bouillaud 8
The Case of “Tan” 9
The Concept of Hemispheric Dominance: The Left Hemisphere and Language 9
The Discovery of the Motor Cortex: Fritsch and Hitzig 10

Further Discoveries: Wernicke 10
Wernicke’s Discovery of Receptive Aphasia 10
The Concept of Sequential Processing 10
The Disconnection Syndrome Hypothesis 11
The Concept of Complementary Hemispheric Specialization:
 The Role of the Right Hemisphere 11
An Example of a Disconnection Syndrome: Alexia Without Agraphia 12

Localization Versus Holism 13
The Limits of Localization: The Mapmakers 13
Reconciliation of the Holist and Localizationist Views: Hughlings-Jackson’s Concept of Hierarchy 13
Bias and Preconception in Early-20th-Century Neuropsychology 15

The Psychometric Approach to Neuropsychology 15
Group Studies and Statistical Analysis 16
The Continuing Role of the Case Study 16

Recent Findings 16
Summary 17
CHAPTER 2 Neural Mechanisms at the Molecular and Cellular Levels 18

The Adaptive Significance of the Nervous System 19

The Capacity for Modulation: The Neuron and the Synapse 19

Discovery of the Neuron and the Synapse 20

General Components of the Neuron 20

Glia 21

Overview of Events at the Synapse 22

Neural Activity at the Molecular and Cellular Levels 23

Physical Forces Underlying Ion Movement 24

Membrane Resting Potential 25

Effects of Neurotransmitter Release on the Postsynaptic Membrane 27

Integration of Input at the Axon Hillock 27

The Action Potential 29

Saltatory Conduction 30

Neurotransmitter Release 31

Mechanisms for Clearing Neurotransmitter After Neuron Firing 33

Responses to Neurotransmitter-Receptor Binding 35

Neuronal Mechanisms of Learning 37

Habituation and Sensitization in Aplysia: Examples of Presynaptic Modulation of Neuronal Activity 37

Classical Conditioning 39

Long-Term Potentiation 40

Two Exceptions to General Rules: Receptor Potentials and Electrical Transmission 42

Receptor Potentials: Transmission Without Action Potentials 42

Electrical Transmission: Communication Between Neurons Without Chemical Synapses 42

Summary 44

CHAPTER 3 Introduction to the Structure and Function of the Central Nervous System 45

General Terminology 45

An Overview of the Central Nervous System 47

The Central and Peripheral Nervous Systems 47

Major Divisions of the Brain 48

The Meninges 48

The Cerebral Ventricles 49

Gray Matter and White Matter 50
The Forebrain 51
The Cerebral Cortex 51
The Basal Ganglia 60
The Limbic System 61
The Diencephalon 63

The Brain Stem 66
The Midbrain 67
The Hindbrain 68

The Cerebellum 68

The Spinal Cord 69

Summary 70

CHAPTER 4 Methods in Neuropsychology 72

Anatomical Methods 73
Identifying Anatomical Connections 73
Structural Imaging Methods 74

Methods Measuring Function 76
Functional Imaging Methods 78
Neurophysiological Methods 80

Lesion Methods 83
Dissociation of Function 83
Interpretation of Single and Double Dissociation 84
Associated Impairments 84
Dissociations as a Window on the Structure of Cognition and on Localization of Function 85
Limits on the Interpretation of Dissociations 85
Further Thoughts on the Logic of Dissociation and Association 86

Commissurotomy 86

The Sodium Amobarbital Test 89
Hemispheric Specialization and Handedness 89
Use of the Sodium Amobarbital Test in the Neurosurgical Management of Focal Seizures 89
The Testing Procedure 90

Studies of People With Behavioral and Cognitive Abnormalities 90

Studies of Normal People: Laterality Studies 91

Summary 92
CHAPTER 5 The Visual System as a Model of Nervous System Functioning 93

The Classical Sequential-Hierarchical View of the Visual Brain 94

An Overview of Recent Advances in the Understanding of Central Visual Processing 94

The Retina 95
The General Organization of the Retina 95
The Photoreceptors 96
Biochemistry of Phototransduction 97
Neural Processing Within the Retina 98

Retinofugal Projections 104
The Lateral Geniculate Nucleus of the Thalamus 107
An Overview of Cortical Areas Mediating Vision 109
Projections From the LGN to the Visual Cortex 109

Specialization Within Cortex Devoted to Vision 110
The Parvocellular-Blob Channel 110
The Parvocellular-Interblob Channel 116
The Magnocellular-V5 Channel and the Magnocellular-V3 Channel 118

The Microanatomy of the Visual Cortex and the Concept of Modular Organization 120

The Problem of Integration and the Construction of a Representation of the Visual World 124

Summary 127

PART II: Neuropsychology of Major Functional Systems

CHAPTER 6 Language 128

Characteristics of Language 129

The Development of Language in Children: Nature Versus Nurture 130

Language Disorders: The Concept of Aphasia 131
Broca’s Aphasia 132
Wernicke’s Aphasia 134
Global Aphasia 135
The Transcortical Aphasias 135
Other Central Language Disorders 136
The Disconnection Syndrome Hypothesis Applied to Language Disorders 136

Major Components of Language Function 138

Auditory Word Comprehension 138
Word Retrieval 141
Sentence Comprehension and Production 142
Speech Production 143
Acquired Reading Impairment 146
Spelling 148
Writing 150

Further Theoretical Considerations 150

The Right Hemisphere and Language 151

Hemispheric Anatomical Asymmetries 153

The Evolution of Human Language 154

Summary 155

CHAPTER 7 Spatial Processing 157

General Considerations 158

Problems in the Neuropsychology of Spatial Processing 158
Types of Spatial Behavior 159
Early Empirical Studies 160

Body Space 160

Body Surface 160
Joint and Muscle Sense 161

Egocentric Space 161

Visual Disorientation 161
Visual Localization 162

Neural Correlates of Visual Disorientation and Impairment in Visual Localization 162

Allocentric Space 164

Spatial Analysis 165

Search for the Mechanisms Underlying Spatial Behavior 166
Perception of Relative Spatial Location 167
Orientation Discrimination 167
Complex Spatial Tasks 167
Topographical Orientation and Memory 168

The Two-Pathway Hypothesis for Object Recognition and Spatial Processing 170
The Role of the Hippocampus in Spatial Processing 171
Unit Recording Studies 172
Lesion Studies 172
Neuroethological Studies 174
Neglect of One Side of Space 176
Neglect as a Disorder of Attention 177
Neglect as a Disruption of the Internal Representation of Space 182
Spatial Thinking and Mental Imagery 184
Electrophysiological Studies 185
Imaging Studies 185
Lesion Studies 186
Hemispheric Specialization for Imagery 187
Implications for Our Initial Questions About Imagery 188
The Role of the Frontal Lobes in Spatial Processing 188
Summary 190

CHAPTER 8 Visual Recognition 194
A Case of Visual Agnosia 195
Disorders of Visual Recognition 196
Early Attempts at Understanding 196
Partial Cortical Blindness 198
Apperceptive Agnosia 199
Associative Agnosia 203
Summary of the Classical View of Visual Agnosia 206
Problems With the Classical Model 207
Perceptual Impairment in Associative Agnosia 207
Significance of the Apperceptive-Associative Distinction 211
Perceptual Impairment in Prosopagnosia and Pure Alexia 211
The Problem of Category-Specific Impairments in Visual Recognition 212
Theories of Visual Agnosia 214
Disconnection Model 215
Symbolic Search Model 216
Massively Parallel Constraint-Satisfaction Models of Object Recognition 217
A Neurobiologically Based Conceptualization of Visual Agnosia 220
Restoration of Sight in Adulthood After Early Onset of Blindness 223
Summary 224
CHAPTER 9 Voluntary Action 226

Voluntary Movement 227

The Components of Voluntary Movement 227
Dimensions of Regulation of Movement 227
Levels of Regulation of Movement 228

Elementary Disorders of Movement 228

An Overview of Higher-Order Control of Movement 229

The Motor Cortex 230
Defining the Motor Cortex 230
Characteristics of Single Neurons in M1 230
How M1 Neurons Code Movement 233
Sensory Input to M1 Neurons 234

The Premotor and Supplementary Motor Areas 235
Anatomical Considerations 235
Stimulation and Lesion Studies 236
Neuroimaging Evidence of Area 6’s Role in Planning Movement Sequences 237
Single Cell Recording 238

The Cerebellum 238
Anatomical Considerations 239
Lesion Studies 240

The Basal Ganglia 240
Anatomical Considerations 240
The Effects of Basal Ganglia Lesions 241
The Contribution of the Basal Ganglia to Movement 242

Apraxia and the Left Parietal Cortex 243
Early Conceptualizations of Apraxia 243
Liepmann’s Classification of the Apraxias 244
A More Theoretically Neutral Approach to Apraxia 245
The Role of the Left Hemisphere in the Control of Voluntary Movement 250

Other Movement-Related Functions of Parietal Cortex 251

The Prefrontal Cortex 251

Summary 252

CHAPTER 10 Memory Systems 255

An Overview of Normal Memory 257
Categorizing Memory in Terms of What Is Remembered 257
Categorizing Memory in Terms of Capacity and Duration 258

<table>
<thead>
<tr>
<th>Component Processes of Memory</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Relationship Between Memory and Other Domains of Cognition</td>
<td>261</td>
</tr>
</tbody>
</table>

Medial Temporal-Lobe Amnesia and the Consolidation Hypothesis 261

<table>
<thead>
<tr>
<th>Patient H. M.</th>
<th>261</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some Implications of H. M.’s Memory Impairment</td>
<td>264</td>
</tr>
</tbody>
</table>

Memory Impairment After Unilateral Temporal-Lobe Lesions 265

| Complementary Specialization of Memory Function for the Left and Right Temporal Lobes | 265 |
| The Roles of Medial Temporal-Lobe Structures and Lateral Temporal Cortex in Memory | 265 |

The Critical Structures Involved in Memory Loss After Temporal-Lobe Lesions 268

<table>
<thead>
<tr>
<th>H M.’s Lesions</th>
<th>268</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrepancy Between Findings in Animals and Humans</td>
<td>268</td>
</tr>
<tr>
<td>Apparent Resolution of the Discrepancy</td>
<td>269</td>
</tr>
<tr>
<td>Search for the Critical Structures Involved in Recognition Memory</td>
<td>269</td>
</tr>
<tr>
<td>Some Conflicting Findings</td>
<td>270</td>
</tr>
<tr>
<td>The Importance of Medial-Temporal Cortex</td>
<td>270</td>
</tr>
</tbody>
</table>

Diencephalic Amnesia 271

Korsakoff’s Disease	271
Other Causes of Diencephalic Amnesia	273
The Relationship Between Medial-Temporal and Diencephalic Amnesia	273

Where in the Memory Process Is the Impairment? 274

Registration/Encoding	274
Consolidation/Storage/Maintenance	274
Retrieval	275

Preserved Aspects of Memory in Amnesia 275

Motor Learning	276
Perceptual Learning	277
Classical Conditioning	277
Cognitive Skill Learning	278
Priming	279

Episodic Memory and Semantic Memory 281

Global Amnesia	282
Selective Impairment of Episodic Memory	282
Selective Impairment of Semantic Memory	282

Short-Term/Working Memory Impairment 283

| Short-Term Memory | 283 |
Working Memory 284
The Frontal Lobes and Working Memory 285

Conceptualization of Multiple Memory Systems 290

The Neural Substrate of Long-Term Memory 291
Lashley's Search for the Engram 291
Evidence That Long-Term Memory Is Stored in the Cortex 292
Hippocampal Binding of Different Memory Elements as an Integral Component in Explicit Memory 294
Storage of Implicit Memory 295
Protein Synthesis and the Structural Plasticity Underlying Long-Term Memory 295
So Where Is Memory Stored? 296

Further Consideration of the Role of the Frontal Lobes in Memory 296
The Frontal Lobes and Organization 297
Impairment in Metamemory 298

Summary 298

CHAPTER 11 Emotion 302

Theories of the Relationship Between Brain and Emotion 305
The James-Lange Theory of Emotion 305
The Cannon-Bard Theory 306
Importance of the Hypothalamus for Emotion 306
The Papez Circuit 308
The Klüver-Bucy Syndrome 310
The Concept of the Limbic System 312

The Neural Basis of Learned Fear as a Model System 316
Advantages of Studying Fear 316
Fear Conditioning 316
Critical Structures for Conditioned Fear 316
The Amygdala: Interface Between Information About the World and Emotional Response 321
The Interspecies Generality of the Amygdala's Role in Fear Conditioning 321

Emotional Memory 323
Emotional Memory and Memory of Emotion 323
Brain Systems Mediating Emotional Memory and Memory of Emotion 323

The Cortex and Emotion 324
The Cortex and Mood 324
The Cortex and the Perception and Interpretation of Emotion 325
The Cortex and Emotional Expression 327
The Temporal Lobes and Emotion 328
The Interaction of Cortex and Amygdala in the Higher-Order Mediation of Emotion 329
Amygdala Influences on Cortex 330
Integration of Cortex and Amygdala 332

Emotion and Conscious Experience 335
Requirements for the Conscious Experience of Emotion 336
Thoughts and Feelings 336

Summary 337

CHAPTER 12 The Prefrontal Cortex and the Higher-Order Regulation of Behavior 339

Toward a Working Model of Prefrontal Cortex Function 340
The Essence of Intelligence 340
Phineas Gage: A Case of the Disruption of Goal-Directed Behavior 340
Anatomical Considerations 342
Problems in the Interpretation of Deficits Following Prefrontal Lesions 345
A Working Model of Prefrontal Function 345

Impairment in Function After Prefrontal Lesions in Humans 347
Emotion and Motivation 347
Social Behavior 348
Memory 349
General Intelligence 350
Language 350
Inventiveness, Ideational Fluency, and Divergent Thinking 351
Abstract and Conceptual Thinking 352
Executive Function: Planning and the Goal-Directed Organization of Behavior 353
The Channeling of Drive Into Goal-Directed Behavior: Inhibiting the Disruptive Effect of Impulsive Behavior 358
Goal-Directed Behavior and Environmental Stimuli 358
Integrating Goal-Directed Behavior With Its Consequences 359
Prefrontal Syndromes 362

Theories of Prefrontal Function 363
An Animal Model of Prefrontal Function 364
Breakdown in the Guidance of Behavior by Representational Knowledge as the Essence of Impairment in Delayed Response 366
Specialization of the Principal Sulcus for Visuospatial Delayed Response in the Monkey 367
Other Prefrontal Subsystems 373
The Problem of Integration in Prefrontal Cortex 377

Summary 377
PART III: The Application of Neuropsychology to Broad Behavioral Domains

CHAPTER 13 Psychopathology 379

What Is Psychopathology? 380

The Schizophrenic Disorders 322
Description 383
The Hypothesis of Multiple Etiologies of Schizophrenia 383
Genetic Factors 384
The Dopamine Hypothesis of Schizophrenia 384
Gross Structural Abnormalities 385
Microstructural Abnormalities 388
Abnormalities Revealed by Functional Imaging 389
Neurological Abnormalities in Schizophrenia 391
Neuropsychological Functioning in Schizophrenia 392
The Hypothesis That Prefrontal Dysfunction Underlies Schizophrenia 393

Mood Disorders 394
Major Depressive Disorder 394
Seasonal Affective Disorder 397
Bipolar Disorder 397

Anxiety Disorders 398
General Neurochemical Factors 398
Simple Phobias 399
Generalized Anxiety Disorder 399
Panic Disorder 399
Obsessive-Compulsive Disorder 400

Sociopathy 400

Dementing Diseases 401
Alzheimer’s Disease: A Cortical Dementia 401
Subcortical Dementias 405

Unsolved Problems 407
The Heterogeneity of Diagnostic Categories 407
Invalid Findings 407
Inferring Cause Based on the Effective Treatment of Symptoms 408
Disentangling Cause and Effect 408
Levels of Explanation 408

Summary 409
CHAPTER 14 Developmental Neuropsychology 411

Development of the Brain 412
Induction 412
Neuroblast Proliferation 413
Cell Migration 413
Axonal Growth 416
Dendritic Growth 417
The Formation of Connections and the Contribution of the Environment 417
Myelination 420

Brain Development and the Development of Higher-Order Function 420
Development of Visual Acuity 421
Development of Control of Visual Orienting 422
Development of Executive Function 422
Language Development 425

Known Causes of Developmental Abnormality 427
Inherited Disorders 427
Chromosomal Disorders 428
Structural Abnormalities 428
Prematurity and Low Birth Weight 428
Infection 428
Toxin-Related Damage 429
Nutritional Disorders 429
Anoxic Episodes 429
Traumatic Brain Injury and Focal Cerebral Abnormality 429

Developmental Disorders of Unknown Cause 430
Learning Disorders 430
Attention Deficit Disorder 435
Autism 438

Summary 440

CHAPTER 15 Recovery of Function 442

The Effects of Brain Damage 442
Cellular Effects 443
Physiological Effects 443

Functional Recovery After Brain Damage 444
Factors Affecting Recovery of Function 444
Age at Time of Lesion as a Factor in Recovery 445