Contents

Preface

1. **Introduction**
 1.1 A Simple Program
 1.1.1 Executing the Program
 1.2 Remarks
 1.2.1 Execution Order
 1.3 Repeating a Block of Commands
 1.3.1 Drawing Any Regular Polygon
 1.3.2 Repeat Within a Repeat
 1.4 Some Useful Turtle Commands
 1.5 Numerical Functions
 1.6 Comments
 1.7 Computation Without Graphics
 1.8 Concluding Remarks
 1.8.1 Graphics
 1.8.2 A Note Regarding the Exercises
 Exercises

2. **A Bird’s Eye View**
 2.1 Problem Solving Using Computers
 2.2 Algorithms and Programs
 2.3 Basic Principles of Digital Circuits
 2.4 Number-Representation Formats
 2.4.1 Unsigned Integer Representation
 2.4.2 Signed Integers
 2.4.3 Floating Point Representations
 2.5 Organization of a Computer
 2.6 Main Memory
 2.6.1 Addresses
 2.6.2 Ports and Operations
 2.7 The Arithmetic Unit
 2.8 Input-Output Devices
 2.8.1 Keyboard
 2.8.2 Display
 2.8.3 Disks
 2.8.4 Remarks
 2.9 The Control Unit
 2.10 The Timing Model
 2.11 High-Level Programming Languages
 2.12 Concluding Remarks
 Exercises

Preface xxii

1. **Introduction**
2. **A Bird’s Eye View**
3. **Exercises**
3. Variables and Data Types

- **3.1 Introduction**
 - **3.1.1 Identifiers**
 - **3.1.2 Literals and Variable Initialization**
 - **3.1.3 The const Keyword**
 - **3.1.4 Reading Data into a Variable**
 - **3.1.5 Printing**
 - **3.1.6 Exact Representational Parameters**

- **3.2 Arithmetic and Assignment**
 - **3.2.1 Integer Division and the Modulo Operator %**
 - **3.2.2 Subtleties**
 - **3.2.3 Overflow**
 - **3.2.4 Infinity and Not a Number**
 - **3.2.5 Explicit Type Conversion**
 - **3.2.6 Assignment Expression**

- **3.3 Examples**

- **3.4 Assignment with repeat**
 - **3.4.1 Programming Idioms**
 - **3.4.2 Combining Sequence Generation and Accumulation**

- **3.5 Some Operators Inspired by the Idioms**
 - **3.5.1 Increment and Decrement Operators**
 - **3.5.2 Compound Assignment Operators**

- **3.6 Blocks and Variable Definitions**
 - **3.6.1 Block**
 - **3.6.2 General Principle 1: Scope**
 - **3.6.3 General Principle 2: Shadowing**

- **3.7 Concluding Remarks**

Exercises

4. A Program-design Example

- **4.1 Specification**
 - **4.1.1 Examples**

- **4.2 Program Design**
 - **4.2.1 Testing**
 - **4.2.2 Correctness Proof**
 - **4.2.3 Invariants**

- **4.3 Debugging**

- **4.4 Comments in the Code**

- **4.5 Concluding Remarks**

Exercises

5. Simplecpp Graphics

- **5.1 Overview**
 - **5.1.1 y-axis Goes Downward!**

- **5.2 Multiple Turtles**

- **5.3 Other Shapes Besides Turtles**
 - **5.3.1 Circles**
5.3.2 Rectangles 63
5.3.3 Lines 63
5.3.4 Text 63

5.4 Commands Allowed on Shapes 64
5.4.1 Rotation in Radians 65
5.4.2 Tracking a Shape 65
5.4.3 Imprinting on the Canvas 65
5.4.4 Resetting a Shape 65

5.5 Clicking on the Canvas 66
5.6 Projectile Motion 66
5.7 Best-Fit Straight Line 67
5.8 Concluding Remarks 69

Exercises 69

6. Conditional Execution 71
6.1 The if Statement 71
6.2 Blocks 75
6.3 Other Forms of the if Statement 75
6.4 A Different Turtle Controller 78
 6.4.1 “Buttons” on the Canvas 78
6.5 The switch Statement 79
6.6 Conditional Expressions 81
6.7 Logical Data 82
 6.7.1 Reasoning About Logical Data 83
 6.7.2 Printing Bool Data 83
 6.7.3 Determining Whether a Number is Prime 84
6.8 Pitfalls 85
6.9 Concluding Remarks 86

Exercises 87

7. Loops 90
7.1 The while Statement 90
 7.1.1 Counting the Number of Digits 92
 7.1.2 Mark Averaging 93
7.2 The break Statement 95
7.3 The continue Statement 95
7.4 The do while Statement 96
7.5 The for Statement 97
 7.5.1 Variables Defined in initialization 98
 7.5.2 break and continue 99
 7.5.3 Style Issue 99
 7.5.4 Determining if a Number is Prime 99
7.6 Uncommon Ways of Using for 100
 7.6.1 Comma-separated Assignments 100
 7.6.2 Input In initialization and update 100
7.7 The Greatest Common Divisor 101
7.8 Correctness of Looping Programs 102
12.3 Default Values of Parameters 174
12.4 Function Overloading 174
12.5 Function Templates 175
 12.5.1 Function Templates and Header Files 176
12.6 Concluding Remarks 176
 Exercises 177

13. Practice of Programming: Some Tips and Tools 178
 13.1 Clarity of Specification 179
 13.2 Input-Output Examples and Testing 180
 13.3 Input/Output Redirection 181
 13.4 Design of Algorithms and Programs 182
 13.4.1 Mentally Execute the Program 184
 13.4.2 Test Cases for Code Coverage 184
 13.5 Assertions 184
 13.5.1 Disabling Assertions 185
 13.6 Debugging 186
 13.6.1 Debuggers and Ides 186
 13.6.2 End of File and Data-input Errors 187
 13.6.3 Aside: Input-Output Expressions 187
 13.7 Random Numbers 188
 13.7.1 The randuv Function In Simplecpp 189
 13.8 Concluding Remarks 189
 Exercises 189

14. Arrays 191
 14.1 Array: Collection of Variables 191
 14.1.1 Array-element Operations 192
 14.1.2 Acceptable Range for the Index 193
 14.1.3 Initializing Arrays 193
 14.2 Examples of Use 193
 14.2.1 Notation for Sub-arrays 194
 14.2.2 A Marks-display Program 194
 14.2.3 Who Got the Highest? 195
 14.2.4 General Roll Numbers 196
 14.2.5 Histogram 197
 14.2.6 A Taxi-dispatch Program 198
 14.2.7 A Geometric Problem 202
 14.3 The Inside Story 203
 14.3.1 Time Required to Access an Array Element 203
 14.3.2 Out-of-Range Array Indices 203
 14.3.3 The Array Name by Itself 205
 14.3.4 The Operator “[]” 205
 14.4 Function Calls Involving Arrays 206
 14.4.1 Examples 207
 14.4.2 Summary 208
 14.5 Selection Sort 208
Contents

14.5.1 Estimate of Time Taken 210
14.6 Representing Polynomials 210
14.7 Array Length and const Values 211
 14.7.1 Why const Declarations? 212
 14.7.2 What We Use in this Book 212
14.8 Concluding Remarks 213
Exercises 213

15. More on Arrays 217
 15.1 Character Strings 217
 15.1.1 Output 218
 15.1.2 Input 218
 15.1.3 Character String Constant 219
 15.1.4 Character-array Processing 220
 15.1.5 Address Arithmetic 222
 15.2 Two-Dimensional Arrays 222
 15.2.1 Linear Simultaneous Equations 224
 15.2.2 Passing Two-dimensional Arrays to Functions 225
 15.2.3 Drawing Polygons in Simplecpp 226
 15.3 Arrays of Pointers 227
 15.3.1 Command-line Arguments to main 227
 15.4 More Dimensions 228
 15.5 Concluding Remarks 228
Exercises 229

16. Arrays and Recursion 231
 16.1 Binary Search 231
 16.1.1 Estimate of Time Taken 233
 16.2 Merge Sort 233
 16.2.1 A Merging Algorithm 234
 16.2.2 Mergesort Algorithm 234
 16.2.3 Time Analysis 236
 16.3 The 8 Queens Problem 236
 16.3.1 Enforcing Constraints Early 239
 16.4 Concluding Remarks 239
Exercises 241

17. Object-oriented Programming: Structures 243
 17.1 Basics of Structures 244
 17.1.1 Visibility of Structure Types and Structure Variables 247
 17.1.2 Arrays of Structures 247
 17.1.3 Pointers to Structures and -> 247
 17.1.4 Pointers as Structure Members 248
 17.1.5 Linked Structures 248
 17.2 Structures and Functions 249
 17.2.1 const Reference Parameters 251
 17.2.2 Passing Pointers to Structures 251
 17.3 Taxi Dispatch Revisited 251
Contents

17. Representing Vectors from Physics
- Representing Vectors from Physics 253

17. Member Functions
- Member Functions 255
 - Reference Parameters and `const` 256
 - Default Values to Parameters 257
 - The this Pointer 257
 - Capturing this in Lambda Expressions 257

17. Concluding Remarks
- Concluding Remarks 257
- Exercises 258

18. Object-oriented Programming: Classes
- Object-oriented Programming: Classes 260
 - Constructors 261
 - Calling the Constructor Explicitly 263
 - Default Values to Parameters 263
 - “Default” Constructor 264
 - Constructors of Nested Structures 264
 - Initialization Lists 265
 - Constant Members 265
 - The Copy Constructor 266
 - Destructors 267
 - Overloading Operators 267
 - Overloading Assignment 269
 - Access Control 270
 - Accessor and Mutator Functions 270
 - Prohibiting Certain Operations 271
 - Classes 271
 - Some Classes you have Already Used, Almost 272
 - Simplecpp Graphics 272
 - Standard Input and Output 272
 - Classes For File I/O 272
 - Header And Implementation Files 273
 - Separate Compilation 275
 - Remarks 275
 - Miscellaneous Features 275
 - Another Overloading Mechanism 275
 - Friends 276
 - Static Data Members 276
 - Static Member Functions 277
 - Template Classes 278
 - Concluding Remarks: The Philosophy of OOP 278
 - Exercises 279

19. A Project: Cosmological Simulation
- A Project: Cosmological Simulation 281
 - Mathematics of Cosmological Simulation 281
 - The Leapfrog Algorithm 283
 - Overview of the Program 285
 - Main Program 285
 - The Class `star` 287
Contents

19.5 Compiling and Execution 288
19.6 Concluding Remarks 288
 Exercises 289

20. Graphics Events and Frames 290
 20.1 Events 290
 20.1.1 Event Objects 290
 20.1.2 Waiting for Events 291
 20.1.3 Checking for Events 291
 20.1.4 Mouse Button-press Events 291
 20.1.5 Mouse Button Release Events 291
 20.1.6 Mouse-drag Events 292
 20.1.7 Key-press Events 292
 20.2 Frames 292
 20.3 A Drawing Program 292
 20.4 A Rudimentary snake Game 293
 20.4.1 Specification 293
 20.4.2 Classes 293
 20.4.3 The Main Program 295
 20.5 Concluding Remarks 295
 Exercises 296

21. Representing Variable-Length Entities 297
 21.1 The Heap Memory 298
 21.1.1 Accessibility and Lifetime 299
 21.1.2 A Worked Out Example 299
 21.1.3 Remarks 300
 21.2 Issues in Managing Heap Memory 301
 21.3 Representing Text 302
 21.3.1 Basic Principles 302
 21.3.2 Constructor 303
 21.3.3 The print Member Function 303
 21.3.4 Assignments 303
 21.3.5 Destructor 305
 21.3.6 Copy Constructor 305
 21.3.7 The [] Operator 306
 21.3.8 The Operator + 307
 21.3.9 Use 308
 21.3.10 A Class to Represent Students 309
 21.4 Concluding Remarks 310
 21.4.1 Class Invariants 310
 Exercises 310

22. The Standard Library 313
 22.1 The string Class 313
 22.1.1 Passing strings to Functions 315
 22.2 The Template Class vector 315
 22.2.1 Inserting and Deleting Elements 316
Contents

22.2
- 22.2.2 The Type `size_t` 316
- 22.2.3 Index Bounds Checking 316
- 22.2.4 Functions on Vectors 317
- 22.2.5 Vectors of User-Defined Data Types 317
- 22.2.6 Multidimensional Vectors 318
- 22.2.7 A Matrix Class 318

22.3
- 22.3 Sorting a Vector 319
 - 22.3.1 Example 320
 - 22.3.2 Sorting an Array 321

22.4
- 22.4 The `map` Template Class 322
 - 22.4.1 Marks Display Again! 324
 - 22.4.2 Time to Access a Map 325

22.5
- 22.5 Containers and Iterators 325
 - 22.5.1 Finding and Deleting `map` Elements 328
 - 22.5.2 Inserting and Deleting `vector` Elements 328

22.6
- 22.6 Other Containers in the Standard Library 328

22.7
- 22.7 The `typedef` Statement 329
 - 22.7.1 More General Form 329

22.8
- 22.8 Remarks 330
- Exercises 330

23. Representing Networks of Entities 333
- 23.1 Graphs 333
- 23.2 Adjacency Lists 334
 - 23.2.1 Edges of Different Types 335
 - 23.2.2 Array/Vector Indices Rather Than Pointers 335
 - 23.2.3 Edges Represented Explicitly 336
- 23.3 Adjacency-Matrix Representation 336
- 23.4 Circuits 338
- 23.5 Surfing on the Internet 340
- 23.6 Concluding Remarks 342
- Exercises 342

24. Structural Recursion 343
- 24.1 Maintaining an Ordered Set 344
 - 24.1.1 A Search Tree 344
 - 24.1.2 Implementation 345
 - 24.1.3 On the Efficiency of Search Trees 347
 - 24.1.4 Packaging Search Trees/Sets 349
 - 24.1.5 Balancing a Search Tree 350
 - 24.1.6 Search Trees and `maps` 350
- 24.2 Layout of Mathematical Formulae 350
 - 24.2.1 Input Format 351
 - 24.2.2 Representing Mathematical Formulae 352
 - 24.2.3 Reading in a Formula 354
 - 24.2.4 The Drawing Algorithm 355
 - 24.2.5 Implementation 359
24.2.6 The Complete main program 361
24.2.7 Remarks 362
Exercises 362

25. Inheritance 365

25.1 Turtles With an Odometer 366
 25.1.1 Implementation Using Composition 366
 25.1.2 Implementation Using Inheritance 367

25.2 General Principles 368
 25.2.1 Access Rules and protected Members 369
 25.2.2 Constructors 371
 25.2.3 Destructors 371
 25.2.4 Other Operations on Subclass Objects 372
 25.2.5 The Type of a Subclass Object 372
 25.2.6 Assignments Mixing Superclass and Subclass Objects 372

25.3 Polymorphism and Virtual Functions 373
 25.3.1 Virtual Destructor 375

25.4 Program to Print Past Tense 375

25.5 Abstract Classes 377

25.6 Multiple Inheritance 378
 25.6.1 Diamond Inheritance 379

25.7 Types of Inheritance 379

25.8 Remarks 380
Exercises 380

26. Inheritance-based Design 382

26.1 Formula-Drawing Revisited 383
 26.1.1 Basic Design 383
 26.1.2 Comparison of the Two Approaches 386
 26.1.3 Adding the Exponentiation Operator 386
 26.1.4 Reading in Formulae 387

26.2 The Simplecpp Graphics System 388

26.3 Composite Graphics Objects 390
 26.3.1 Ownership 391
 26.3.2 The composite Class Constructor 391

26.4 A car Class 391

26.5 Concluding Remarks 394
Exercises 395

27. Discrete-event Simulation 397

27.1 Discrete-event Simulation Overview 398
 27.1.1 Discrete-time Systems 398
 27.1.2 Evolution of a Discrete time System 399
 27.1.3 Implementing a Discrete-time System 399
 27.1.4 Simple Examples of Use 402

27.2 The Restaurant Simulation 404

27.3 Resources 405
 27.3.1 A resource Class 405
27.3.2 Simple Example 406
27.3.3 The Coffee-Shop Simulation 407

27.4 Single-Source Shortest Path 408
27.4.1 Dijkstra’s Algorithm as a Simulation 411

27.5 Concluding Remarks 413
Exercises 413

28. Simulation of an Airport 415
28.0.1 Chapter Outline 416

28.1 The Simulation Model 416
28.1.1 Overall Functioning 416
28.1.2 Safe Operation and Half-Runway Exclusion 417
28.1.3 Scheduling Strategy 417
28.1.4 Gate Allocation 418
28.1.5 Simulator Input and Output 418

28.2 Implementation Overview 418
28.2.1 Half-runway Exclusion 419
28.2.2 Gate Representation and Allocation 419

28.3 Main Program and Data Structures 419
28.4 The taxiway Class 420
28.5 The plane Class 422
28.5.1 Action land 425
28.5.2 Action requestAGate 426
28.5.3 Action turnToGate 426
28.5.4 Action atGate 427
28.5.5 Action backOnTaxiway 427
28.5.6 Action prepareToTakeOff 427
28.5.7 Action depart 427
28.5.8 Action for an Ordinary Segment 428

28.6 Deadlocks 428
28.7 Concluding Remarks 429
Exercises 429

29. Systems of Non-Linear Equations 431
29.1 Newton–Raphson Method in Many Dimensions 432
29.2 The General Case 434
29.2.1 Termination 434
29.2.2 Initial Guess 434

29.3 How a Necklace Reposes 435
29.3.1 Formulation 435
29.3.2 Initial Guess 436
29.3.3 Experience 437

29.4 Remarks 437
Exercises 437

Appendix A Simplecpp 438
A.1 Installation 438
A.2 Non-Graphics Features 438
| A.3 Graphics Classes and Functions | 439 |
| A.4 Compiling | 439 |

Appendix B *Reserved Words in C++*
Appendix C *Operators and Operator Overloading*
C.1 Bitwise Logical Operators 441
C.1.1 OR 441
C.1.2 AND 441
C.1.3 Exclusive OR 442
C.1.4 Complement 442
C.1.5 Left Shift 442
C.1.6 Right Shift 442
C.2 Comma Operator 443
C.3 Operator Overloading 443

Appendix D *Formatted Output*
D.1 General-Purpose Manipulators 444
D.2 Numeric Data 445
D.2.1 Base 446
D.2.2 Capitalization 446
D.3 Boolean Data 446

Appendix E *The stringstream Class*

Appendix F *Exceptions*
F.1 The General Form 450
F.2 Enabling Input Exceptions 451

Appendix G *Managing Heap Memory*
G.1 Reference Counting 453
G.2 The Template Class `shared_ptr` 453
G.2.1 Shared Pointers in the `string` Class 454
G.2.2 General Strategy 455
G.2.3 Shared Pointers in Expression Tees 456
G.3 Weak Pointers 457
G.3.1 Solution Idea 458
G.4 Concluding Remarks 458

Appendix H *The C++ Preprocessor*
H.1 Source-File Inclusion 459
H.2 Macros 459
H.2.1 Predefined Macros 460
H.3 Conditional Inclusion 460

Index
463