
This chapter introduces one of the orthogonal-complement-based methodologies for
the automatic generation of dynamic
equations of motion and associated
algorithms, namely, the inverse and
forward dynamics. As mentioned in
Chapter 8, inverse dynamics is essential
for control of robot manipulators, whereas
forward dynamics is required for
computer simulation and real-time feedback control. To solve the inverse or forward
dynamics problems of a complex robotic system, a set of dynamic equations of
motion or the dynamic model of the robot under study is needed, which were derived
in Chapter 8 using Euler–Lagrange (EL) and Newton–Euler (NE) formulations. The
resultant equations of motion are expressed generally in the form of Ordinary
Differential Equations (ODE). The same set can be obtained using alternate
approaches, e.g., orthogonal complements of the velocity constraints (Huston and
Passerello, 1974), Kane’s equations (Kane and Levinson, 1983), and others. Amongst
these, the former approach has been adopted by many researchers for the automatic
generation of the equations of motion for complex mechanical systems like the robots
studied in this book. One such complement is the Natural Orthogonal Complement
(NOC), which was originally proposed by Angeles and Lee (1988) for serial robots,
but generalized later by Saha and Angeles (1991) to take into account the nonholonomic
constraints of wheeled mobile robots. The NOC was eventually decoupled by the
author of this book (Saha 1997, 1999, 2003) which was named as the Decoupled
NOC (DeNOC). The decoupling of the NOC or the use of DeNOC has the following
advantages:
∑ It allows one to obtain recursive order (n)—n being the number of links in the

serial-chain robot—inverse and forward dynamics algorithms. The recursive
forward dynamics algorithm was not possible with the original form of the
NOC. Also, the recursive NE algorithm presented in Section 8.4 is meant only
for the inverse dynamics.

∑ Each scalar element of the matrices and vectors associated with the equations
of motion of the robot can be written analytically, which allows one to provide

Why Recursive
Recursive algorithms, where the compu-
tations are done based on some previous
calculations, provide computationally effi-
cient algorithms.

Recursive Robot
Dynamics*

9

* This chapter requires in-depth understanding of Chapter 8. Hence, it is advised to offer to final year
undergraduate students, postgraduate students at MTech, MS, and PhD levels.

SIR_09.indd 283 4/22/2014 6:39:51 PM

Introduction to Robotics284

many physical interpretation, e.g., articulated body inertia, etc., and helps a
programmer debug the computer algorithms.

∑ Since the methodology is built upon basic mechanics and linear algebra theories,
the concept can be easily understood even by undergraduate students.

The DeNOC-based modeling has been successfully applied to (i) serial
manipulators with fixed-base, as used in industrial robots (Saha, 1997; 1999; 2003);
(ii) serial robots with free-base, i.e., a configuration for free-floating space robots
(Saha, 1996); (iii) closed-loop parallel Stewart platform-type robots (Saha and
Schiehlen, 2001; Khan et al., 2005), and Hexapod machine tools (Koteswara Rao et
al., 2006); (iv) multi-closed-loop general mechanical systems (Chaudhary and Saha,
2006); (v) serial flexible-link systems (Mohan and Saha, 2007a), and (vi) general
tree-type systems (Shah and Saha, 2013). As emphasized in Mohan and Saha
(2007b), and Shah et al. (2013), the DeNOC based formulation provides efficient
and numerically stable algorithms.

9.1 Dynamic moDeling
In this section, dynamic equations of motion of an n-link n degree-of-freedom (DOF)
serial robot, as shown in Fig. 9.1(a), are derived using the Decoupled Natural
Orthogonal Compliment (DeNOC)
matrices. First, the uncoupled Newton-
Euler (NE) equations of motion, as
introduced in Section 8.3, are written for
all n links in a compact form. Next, the
constraints between the links due to the joints, e.g., revolute, prismatic, etc., are
expressed mathematically, which brings the DeNOC matrix into picture. The DeNOC
relates the Cartesian velocities of all the links with the joint rates or velocities.
Finally, the pre-multiplication of the DeNOC matrices with the uncoupled NE
equations yields a set of independent equations of motion, which are nothing but the
Euler–Lagrange (EL) equations of motion presented in Section 8.2. Hence, the EL
equations are derived via DeNOC matrices without resorting to the complex partial
derivatives given by Eq. (8.24).

9.1.1 Uncoupled newton–euler equations
For the n-link n-DOF open-loop serial-chain robot manipulator, Fig. 9.1(a), if mi
is the mass of the ith link and Ii

 denotes the 3×3 inertia tensor of the ith link about
its mass center Ci, as indicated in Fig. 9.1(b), the Newton–Euler (NE) equations of
motion for the ith link can be derived from its free-body diagram, and written as

Euler’s Equation: Iiẇi + wi ¥ Ii wi = ni (9.1a)

Newton’s Equation: mic̈i = fi (9.1b)

where wi and ẇi are the 3-dimensional vectors of angular velocity and acceleration
for the ith link, respectively, whereas c̈i is the 3-dimensional vector of acceleration of
the mass center Ci. Moreover, ni and fi are the 3-dimensional vectors of the resultant
moment about Ci and resultant force at Ci, respectively. Note here that no reference
to the coordinate frame is made to express the vectors and matrices, as they can be

modeling

Modeling here means a way to be able to
understand the behavior of a robot even
without having a real one.

SIR_09.indd 284 4/22/2014 6:39:51 PM

Recursive Robot Dynamics 285

Fig. 9.1 A serial robot manipulator

represented in any frame of the analyst’s choice. Typically, they are expressed in the
frame attached to the ith link, i.e., frame i+1. However, during the derivations of the
equations of motion in the subsequent sections, they will be avoided. Combining
Eqs. (9.1a-b), the six scalar uncoupled NE equations are written in a compact form
as

 Miṫi + WiMiti = wi (9.2a)

where the 6 × 6 mass matrix Mi, and the the 6 × 6 angular velocity matrix Wi, for the
ith link are given by

 Mi ∫ i

im

È ˘
Í ˙
Î ˚

I O

O 1
; and Wi ∫

i ¥È ˘
Í ˙
Î ˚

1 O

O O

w
 (9.2b)

in which wi × 1 is the 3 × 3 cross-product tensor associated with the angular velocity
vector wi, which is defined as (wi × 1)x ∫ wi × x, for any three dimensional Cartesian
vector x. Moreover, 1 and O are the 3 × 3 identity and zero matrices, respectively.
Furthermore, the 6-dimensional vectors, twist ti and wrench wi, are as follows:

 ti ∫
i

i

È ˘
Í ˙
Î ˚c
w

 and wi ∫ i

i

È ˘
Í ˙
Î ˚

n

f
 (9.2c)

where, in contrast to the definition of twist given in Eq. (6.93), the linear velocity
of the mass center of the ith link Ci is considered. In Eq. (9.2a), vector ṫi is the time
derivative of the twist vector ti defined in Eq. (9.2c). Equation (9.2a) is now written
for all n links, i.e., for i = 1, …, n, as

 Mṫ + WMt = w (9.3a)

where M and W are the 6n × 6n generalized mass matrix, and the generalized matrix
of the angular velocities, respectively. They are given by

 M ∫ diag.[M1, …, Mn], and W ∫ diag.[W1, …, Wn] (9.3b)

Also, the 6n-dimensional vectors of generalized twist and wrench are defined as

 t ∫ [t1
T, …, tn

T]T; and w ∫ [w1
T, …, wn

T]T (9.3c)

Equations (9.3a-c) represent the 6n uncoupled NE equations of motion of the
n-links in the serial robot manipulator under study.

SIR_09.indd 285 4/22/2014 6:39:52 PM

Introduction to Robotics286

9.1.2 Kinematic constraints
Links of the robot manipulator, Fig. 9.1(a),
are coupled by kinematic pairs or joints
which are either revolute or prismatic.
From the rigid-body motion of the two
bodies or links, namely, #i and #j, as
shown in Fig. 9.2, the angular and linear
velocities of the ith link, i.e., the twist of
the ith body defined in Eq. (9.2c), can be
derived from the velocities of the jth link
or #j, and the joint motion of the ith joint.
They are derived as follows:

 wi = wj + eiq̇i (9.4a)

 ċi = ċj + wj ¥ rj + wi ¥ di (9.4b)

The above six scalar velocity constraint
equations can be written in compact form as

 ti = Bijtj + piq̇i (9.4c)

where qi is the joint displacement, angular for a revolute joint and linear for a
prismatic joint. Accordingly q̇i is the joint rate. Moreover, the 6 × 6 matrix Bij and the
6-dimensional vector pi are functions of the positions of the mass centres of the two
successive bodies, i.e., Ci and Cj of Fig. 9.2, and the axis of the joint joining them,
namely, ei. They are defined as

 Bij ∫
ij

È ˘
Í ˙¥Í ˙Î ˚

1 O

c 1 1
 and pi ∫

i

i i

È ˘
Í ˙¥Î ˚

e

e d
 (9.4d)

cij × 1 being the cross-product tensor associated with vector cij shown in Fig. 9.2,
which is defined similar to wi × 1 of Eq. (9.2b), i.e., (cij × 1)x = cij × x, for any
arbitrary 3-dimensional Cartesian vector x. The vector cij is given by cij = – di – rj.
It is interesting to note here that the matrix Bij and the vector pi have the following
interpretations:
∑ For two rigidly connected moving links, #i and #j, Bij, propagates the twist of

#j to #i. Hence, matrix Bij is termed here as the twist propagation matrix, which
has the following properties:

 BijBjk = Bik; Bii = 1; and Bij
–1 = Bji (9.5a)

∑ Vector pi on the other hand takes into account the motion of the ith joint. Hence,
pi is termed as the joint-motion propagation vector, which is dependent on the
type of joint. For example, the expression of pi in Eq. (9.4d) is for a revolute
joint shown in Fig. 9.2, whereas for a prismatic joint, vector pi is given by

 pi ∫
i

È ˘
Í ˙
Î ˚

0

e : For a prismatic joint (9.5b)

 where ei is the unit vector parallel to the axis of linear motion. Correspondingly,
q̇i of Eq. (9.4c) would mean the linear joint-rate. Other joints are not treated
here because any other joint, e.g., a spherical or a cylindrical, can be treated as

Fig. 9.2 Three coupled bodies

SIR_09.indd 286 4/22/2014 6:39:52 PM

Recursive Robot Dynamics 287

combination of three revolute, or revolute and prismatic pairs, respectively. For
i = 1, …, n, Eq.(9.4c) is put in a compact form for all the n joints as

 t = Nq̇ , where N ∫ Nl Nd (9.6a)

where t is the 6n-dimensional generalized twist defined in Eq. (9.3c). In Eq. (9.6a), it
is expressed as a linear transformation of the n-dimensional joint-rate vector q̇ . The
6n × 6n matrix Nl, the 6n × n matrix Nd, and the n-dimensional vector q̇ , are defined
as follows:

 Nl ∫
21

1 2n n

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

1 O O

B 1 O

B B 1

; Nd ∫

1

2

n

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

p 0 0

0 p 0

0 0 p

; and q̇ ∫

1

2

n

q
q

q

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

 (9.6b)

The 6n × n matrix N in Eq. (9.6a) is nothing but the Natural Orthogonal
Complement (NOC) matrix of the velocity constraints (Angeles and Lee, 1988),
and its decoupled form Nl and Nd, are referred as the Decoupled NOC (DeNOC)
matrices (Saha, 1997; 1999). The expressions of the DeNOC matrices allow one to
develop recursive inverse and forward dynamics algorithms required in control and
simulation of robot manipulators, respectively.

Note however the difference in the expression of Nl and Nd in Eq. (9.6b) compared
to those in Chapter 6 for the derivation of Jacobian, namely, Eq. (6.98b) and (6.101).
This is mainly due to the choice of a point on the rigid link to specify its linear
velocity. Whereas in Chapter 6, the point Oi at which the links #(i–1) and #i are
coupled was chosen to define the linear velocity of #i, as explained after Eq. (6.93),
the same is defined in this chapter with respect to Ci, i.e., the mass center of #i
which is given after Eq. (9.4c). To point out these differences, two different notation
for the twist-propagation matrices denoted with Aij and Bij defined in Eqs. (6.94b)
and (9.4d), respectively, are introduced. Such differences will occur even for a third
choice of a point to define the linear velocity of #i. In general, if ti

O and ti
C are used to

define the twists with respect to point Oi (Chapter 6) and point Ci (this chapter), then
one can draw the following correlations:

 , 1 1 1(()C d O O d
i i i i i i i iq- - -= + t B + P)t p + p (9.7a)

 , 1 1 1(()O d C C d
i i i i i i i iq- - -= - + - t A P)t p p (9.7b)

where pi
O and pi

C are the joint-motion propagation vectors, i.e., pi’s of Eqs. (6.94b)
and (9.4d), respectively, whereas the matrix Pd

i,i–1 and vector pi
d are defined as

 Pd
i–1 ∫

1i-

È ˘
Í ˙- ¥Î ˚

O O

d 1 O
 and

d
i

i i

È ˘
∫ Í ˙¥Î ˚

0
p

e d (9.7c)

Even though both the definitions of twists were used in the derivations of
dynamics equations of motion, e.g., Saha and Schiehlen (2001), and Chaudhary and
Saha (2003) used ti

O, and Saha (1997, 1999) used ti
C, the latter has been adopted in

this book mainly due to simplicity in the Euler’s equations of rotational motion given
by Eq. (8.92) where no explicit term associated with the linear acceleration appear.

SIR_09.indd 287 4/22/2014 6:39:52 PM

Introduction to Robotics288

9.1.3 coupled equations of motion
The uncoupled NE equations of motion given by Eq. (9.3a) are rewritten as

 Mṫ + WMt = wE + wC (9.8)

where w of Eq. (9.3a) is substituted as w ∫ wE + wC—wE and wC being the external
and constraint wrenches, respectively. The external wrench wE is contributed from
the moments and forces due to the joint actuators, gravity, environmental effects, etc.,
whereas the constraint wrench wC is due to the presence of the joints that contains
the reaction moments and forces at the joint interfaces. Since the constraint wrench
wC does not do any useful work towards the motion of the robot links, the power
consumed due to wC, i.e., PC ∫ tT wC, vanishes. The sole purpose of wC is to maintain
the relative configuration of the links without getting separated. Using the expression
for the generalized twist t from Eq. (9.6a) the vanishing power due to wC, PC, is
given by

 PC ∫ tTwC ∫ q̇ T NTwC ∫ q̇ T NT
d N

T
l w

C = 0 (9.9a)

For the n-link, n degree-of-freedom (DOF) serial robot, the n-dimensional joint-
rate vector q̇ is independent. Hence, to satisfy Eq. (9.9a), the following condition
must hold good:

 NTwC ∫ NT
d N

T
l w

C = 0 (9.9b)

Now, upon multiplication of the transpose of the NOC, NT, to the uncoupled NE
equations of motion, Eq. (9.8), the following set of independent dynamic equations
of motion is obtained:

 Iq̈ + h = t, where h ∫ Cq̇ (9.10a)

where the result of Eq. (9.9b), and the time derivative of the generalized twist t from
Eq. (9.6a), namely, ṫ = Nq̈ + Ṅ q̇ , are used. Note that Eq. (9.10a), in comparison to the
equations of motion derived in Chapter 8, namely, Eq. (8.44a), does not contain the
term g due to the gravity. In fact, t of Eq. (9.10a) contains the effect of g. In a way, t
of Eq. (9.10a) is equal to t plus g of Eq. (8.44a). Moreover,

I ∫ NTMN ∫ NT
dM̃ Nd: the n × n generalized inertia matrix (GIM), which is

symmetric and positive definite;
C ∫ NT(MṄ + WMN) ∫ NT

d(M̃
l + M̃

w + M̃
e)Nd: the n × n matrix of convective

inertia (MCI) terms;
h ∫ Cq̇ = NT

d w̃ ¢: the n-dimensional vector of convective inertia (VCI) terms;
t ∫ NTwE ∫ NT

dw̃E: the n-dimensional vector of generalized forces due to driving
torques/forces, and those resulting from the gravity, environment and dissipation.

Also, the 6n × 6n matrices, M̃ , M̃
l, M̃

w, M̃
e and the 6n-dimensional vectors, w̃E

and w̃ ¢, are given by

 M̃ ∫ Nl
T MNl; M̃

l ∫ Nl
T MṄ

l, M̃
w ∫ M̃ W, M̃

e ∫ Nl
T WMNl

 w̃ ¢ ∫ Nl
T (Mt ¢ + WMt); t¢ ∫ (Ṅ

l + NlW)Nd q̇ ; and w̃E ∫ Nl
T wE (9.10b)

where Ṅ
d = WNd in which W ∫ diag.[W1, ..., Wn] was used. Note that the 6 × 6 skew-

symmetric matrix Wi associated with the 3-dimensional angular velocity vector wi is
different from Wi. The former is defined as Wi ∫ diag. [wi ¥ 1, wi ¥ 1]. Moreover, the
matrices, Nl, M, W, and the vector wE are defined in the previous sections, whereas
the vector t¢ in Eq. (9.10b) is nothing but the twist-rate vector while q̈ = 0. It is pointed

SIR_09.indd 288 4/22/2014 6:39:52 PM

Recursive Robot Dynamics 289

out here that Eq. (9.10a) was also derived in Chapter 8, i.e., Eq. (8.44a), using the
Euler–Lagrange equations of motion. In the latter case, one required complex partial
differentiations, whereas the former is derived here from the Newton–Euler equations
of motion which are simpler to visualize in the three-dimensional Cartesian space,
and simple linear-algebra concepts.

9.2 analytical expRessions
It can be shown that using the concept of the DeNOC matrices each element of the
GIM, MCI, VCI and the generalized
forces can be expressed analytically,
which allow one to extract many physical
interpretations and suggest ways to
simplify the expressions and computational
complexity. The analytical expressions
are obtained next.

9.2.1 generalized inertia matrix (gim)
The expressions for the n × n GIM I is given after Eq. (9.10a) as

 I ∫ NTMN ∫ Nd
TM̃ Nd (9.11a)

where M̃ ∫ Nl
TMNl is the 6n × 6n symmetric composite mass matrix, which is

obtained as

 M̃ ∫

1

2 21 2

3 31 3 32 3

1 2 3n n n n n n n

symÈ ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

M

M B M

M B M B M

M B M B M B M

 (9.11b)

where sym denotes the symmetric elements of the matrix M̃ . The 6 × 6 matrix M̃
i can

be evaluated from i = n to 1 as

 M̃
i ∫

1

n
T

i ki k ki
k i= +

+ ÂM B M B (9.11c)

which requires order n2 computations, as there is a summation over k = i + 1, …,
n. A close look into the equation, along with the first two properties of Eq. (9.5a),
however, reveal that the summation expression can be evaluated recursively, for i =
n, …, 1, as

 M̃
l ∫ Mi + BT

i+1,iM̃
i+1Bi+1, where M̃

n ∫ Mn (9.11d)

Equation (9.11d) has the following physical interpretations:
1. It is the mass matrix of a body composed of links, #n, …, #i, that are rigidly

connected. This is referred as composite body i, as indicated in Fig. 9.1(a),
whose name can be justified from the 3 × 3 block matrices of M̃

i. In Eq. (9.11d),
if i = n,

computation complexity
In computer algorithms, computational
complexity can be estimated in terms
of the number of arithmetic operations
performed in terms of multiplications,
additions, etc.

SIR_09.indd 289 4/22/2014 6:39:52 PM

Introduction to Robotics290

 M̃
n = Mn ∫ n

nm

È ˘
Í ˙
Î ˚

I O

O 1
 (9.12a)

 and, for i = n–1,

 M̃
n–1 ∫ Mn–1 + BT

n,n–1M̃
nBn,n–1 (9.12b)

 which can be rewritten as

 M̃
n–1 ∫

1 1

1 11

n n

n nm

- -

- -

È ˘- ¥
Í ˙
Í ˙¥Î ˚

I 1

1

d

d
 (9.12c)

 where the scalar m̃ n–1, the 3-dimensional vector dn–1, and the 3 × 3 matrix Ĩ n–1
are given by

 m̃ n–1 ∫ mn–1 + m̃ n, where m̃ n = mn (9.13a)

 d̃n–1 ∫ mncn,n–1 + d̃n, where d̃n = 0 (9.13b)

 Ĩ n–1 ∫ In–1 + Ĩn – cn,n–1 × (d̃n–1¥ 1), where Ĩn = In (9.13c)

 The matrix Ĩ n–1 is the inertia tensor of the body composed of rigidly connected
links #(n–1) and #n with respect to the mass center of the (i–1)st link, i.e., Ci–1,
in which the third term is nothing but the one associated with the transfer of
the definition of In from Cn to Cn-1, similar to the parallel-axis theorem given in
Section 8.1.3. Continuing with i = n–2, …, 1, the scalar m̃ i, the 3-dimensional
vector d̃i, and the 3 × 3 matrix Ĩ i are calculated as follows:

 m̃ i ∫ mi + m̃ i+1 (9.14a)

 d̃i ∫ m̃ i+1ci+1,i + d̃i+1 (9.14b)

 Ĩ i ∫ Ii + Ĩ i+1 – d̃i+1 × (c i+1,i ¥ 1) – ci+1,i × (d̃i ¥ 1) (9.14c)

2. The inertia effect of the composite body (i + 1), i.e., Ĩ i+1, is taken into account
with respect to Ci, and added with the inertia tensor of link i with respect to Ci,
i.e., Ii, to give the inertia of the composite body i with respect to Ci, i.e., Ĩ i. Other
terms, i.e., (2,1) and (2,2)—blocks of Eq. (9.12c) are similarly added to define
the mass matrix of the composite body i or the composite mass matrix M̃

i. Now,
using the expression, I ∫ Nd

T M̃ Nd, the symmetric GIM I is written as

 I ∫

T
1 1 1

T T
2 2 21 1 2 2 2

T T T
3 3 31 1 3 3 32 2 3 3 3

T T T T
1 1 2 2 3 3n n n n n n n n n n n n

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

p M p

p M B p p M p

p M B p p M B p p M p

p M B p p M B p p M B p p M p

sym

 (9.15a)

 where “sym” denotes the symmetric elements, and the (i,j) scalar element of the
GIM, denoted by iij, is given analytically as

 iij ∫
T
i i ij jp M B p , for i = n, …, 1; j = i, …, 1 (9.15b)

SIR_09.indd 290 4/22/2014 6:39:53 PM

Recursive Robot Dynamics 291

 Note that the symmetric elements above the diagonal elements of the GIM,
Eq. (9.15a), can be expressed as

 iji ∫ T T
j ij i ip B M p , for i = n, …, 1; j = i, …, 1 (9.15c)

 In Eq. (9.15a), iij = iji, as obvious from the transpose of the right hand sides of
Eqs. (9.15b) and (9.15c). Hence, one is required only to compute either (9.15b)
or (9.15c) in a dynamics algorithm. In the examples of this chapter, the lower
triangular elements of the GIM are computed using Eq. (9.15b), which require
n2 arithmetic operations—n being the number of links or joints in the serial-
chain robot.

9.2.2 matrix for convective inertia (mci) terms
Analytical expressions of the matrix of convective inertia (MCI) terms are derived
from the MCI definition given after Eq. (9.10a), i.e.,

 C ∫ NT (MṄ + WMN) ()T
d l e dw∫ + +N M M M N (9.16a)

where the 6n × 6n matrices M̃
l, M̃

w and M̃
e are reproduced from Eq. (9.10b) as

 M̃
l ∫ NT

l MṄ
l; M̃

w ∫ M̃ W ∫ NT
l MNlW; and M̃

e ∫ NT
l WMNl (9.16b)

Matrix M̃
l is then obtained as

 M̃
l ∫

121 1

212

, 1

1 , 1

T T
n

T
n n

n n nn

-

-

È ˘ È ˘È ˘
Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚Î ˚

O O OM O O1 B B
B OO MO 1

OOB
B B OO O MO O 1

 (9.16c)
where the 6 × 6 matrix Ḃ

i+1,i is given by

 Ḃ
i+1,i ∫

1()i i+

È ˘
Í ˙- + ¥Î ˚

O O

r d 1 O
 (9.16d)

in which ṙi = wi ¥ ri, and ḋi+1 = wi+1 ¥ di+1. The expression of M̃
l is then rewritten as

 M̃
l ∫

21 21 31 32 1 , 1

21 32 32

31 32

, 1 , 1

1 2 , 1

T T T
n n n

T

T
n n n n

n n n n

-

- -

-

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

B H B H B H O

H B H

H H

B H

H H H O

 (9.16e)

In Eq. (9.16e), 1, 1,
T

ij i ij i i i i+ +∫ +H M B B H , and for, i = n, 1,n n+H = O. Next, the 6n

× 6n matrix M̃
w, as defined in Eq. (9.16b), is formed as

 M̃
w ∫

11

22 21 2

1 2 1 nn n n n

symÈ ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙

Í ˙Í ˙ Î ˚Î ˚

O OM
OM B M

OM B M B M

W
W

W

 (9.16f)

SIR_09.indd 291 4/22/2014 6:39:53 PM

Introduction to Robotics292

which yields

 M̃
w ∫

1 1 21 2 2 1

2 21 1 2 2 2

1 1 2 2

T T
n n n

T
n n n

n n n n n n

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

M B M B M

M B M B M

M B M B M

W W W

W W W

W W W

 (9.16g)

Finally, the matrix M̃
e is obtained as

M̃
e ∫

1 121 1

2 2 21

, 1

1 2

T T
n

T
n n

n n n n

-

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚Î ˚

W M O O 1 O O1 B B

O W M B 1O 1

OB
O O W M B B 1O O 1

 (9.16h)
which is written in compact form as

 M̃
e ∫

1

2 21 2

1 2n n n n n

symÈ ˘¢
Í ˙¢ ¢Í ˙
Í ˙
Í ˙

¢ ¢ ¢Í ˙Î ˚

M

M B M

M B M B M

 (9.16i)

where M̃ ¢
i for i = n, …, 1, is calculated similar to matrix M̃

i, Eq. (9.11d), as

 M̃ ¢
i = 1, 1 1,

T
i i i i i i+ + ++¢ ¢M B M B (9.16j)

in which M¢i = WiMi, for i = n, …, 1. The scalar elements of the MCI C, i.e., cij, for
i,j = n, …, 1, are then obtained explicitly from Eqs. (9.16a-j) as

 ci,j ∫ 1, 1,[()]T T T
i j i j i ji j j j j+ + + + ¢p B H B M M p W if i £ j (9.16k)

 ci,j ∫ ()T
i ij i ij j i ij j+ + ¢p H M B M B p W otherwise.

Comparing Eqs. (9.15b) and (9.16k), it is observed that the elements of the GIM
and MCI are expressed in a uniform manner, i.e., pT

i (.)pj, where (.) denotes the
matrix argument. In Eq. (9.16k), the explicit analytical expression for each element
of the MCI is available, which is not advisable to be used for the calculation of
vector h(∫ Cq̇) given by Eq. (9.10a) but suitable for the physical interpretations and
debugging. Whereas the explicit evaluation of the MCI C requires order (n2)—n
being the degree of freedom of the robot—calculations, the VCI h can be computed
recursively needing order n operations. The order n algorithm for the VCI is given
next. Now, as per as the physical interpretation of the MCI is concerned, note that
for a planar robot with all revolute joints, the axes are all parallel and do not change
their direction while the robot is in motion. Hence, their time derivative, Ṅd = WNd =
O. As a result, the term in Eq.(9.16a) associated with M̃

w vanishes to provide simpler
expressions of the MCI C.

SIR_09.indd 292 4/22/2014 6:39:53 PM

Recursive Robot Dynamics 293

9.2.3 Vector of convective inertia (Vci) terms
The vector of convective inertia (VCI) terms h is given after Eq. (9.10a) is reproduced
below:

h ∫ Cq̇ = NT
d w̃ ¢, where w̃ ¢ = NT

l (Mt ¢ + WMt) and t¢ = (Ṅl + Nl W)Nd q̇ (9.17)

Note that t ¢ is the generalized twist-rate vector while q̈ = 0, i.e., it contains the
centrifugal and Coriolis acceleration terms. Introducing the following notations

 M¢ = WM and w ¢ = Mt ¢ + M¢t
and substituting the expression for Nl from Eq. (9.6b) into Eq. (9.17) yields

 w̃ ¢ ∫

1 121 1

2 2

, 1

T T
n

T
n n

n n

-

È ˘ ¢ ¢È ˘ È ˘
Í ˙ Í ˙ Í ˙¢ ¢Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙

¢ ¢Í ˙ Í ˙ Í ˙Î ˚ Î ˚Î ˚

w w1 B B

w wO 1

B
w wO O 1

 (9.18a)

where w¢i = Mi t¢i + M¢i ti , for i = n, …, 1. Note that the 6n-dimensional vector w ¢
can be interpreted as the generalized wrench due to the convective inertia terms.
Moreover, the elements of the vector w̃¢i, Eq. (9.18a), can be obtained recursively as

 w̃¢i = 1, 1
T
i i ii + ++¢ ¢w B w , where n n=¢ ¢w w (9.18b)

Furthermore, using the expression for Nd, the VCI of Eq. (9.17) h is given by

 h ∫

1 1

2 2

T

T

T
n n

È ˘¢
Í ˙

¢Í ˙
Í ˙
Í ˙
Í ˙¢Î ˚

p w

p w

p w

 (9.19a)

in which each element of hi, denoted as hi, is written as

 hi =
T
i i¢p w , for i = n, …, 1 (9.19b)

The expressions in Eqs. (9.19a-b) together provide an order n algorithm for the
calculation of the VCI.

9.2.4 generalized Force
The expressions for the elements of the generalized forces t, given after Eq. (9.10a)
are as follows:

 t = NT
d w̃ E, where w̃ E = NT

l w
E (9.20a)

Upon substitution of the expression for Nl from Eq. (9.6b) and noting that,
wE ∫ [(w1

E)T … (wn
E)T]T, the 6n-dimensional vector w̃ E is written as

 w̃ E ∫

1 121 ,1

2 2

, 1

E ET T
n

E E

T
n n

E E
n n

-

È ˘ È ˘È ˘
Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙ =Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙Î ˚ Î ˚ Î ˚

w w1 B B

O 1 w w

B

O O 1 w w

 (9.20b)

SIR_09.indd 293 4/22/2014 6:39:53 PM

Introduction to Robotics294

where w̃ i
E ∫ wi

E + BT
i+1,i w̃ Ei+1 and w̃ En ∫ wn

E. The generalized force t is then found as

 t ∫

1 1

2 2

T E

T E

T E
n n

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

p w

p w

p w

 (9.21a)

From Eq. (9.21a), each element of the n-dimensional vector t, i.e., ti is then
obtained from

 ti = pi
T w̃ E

i, for i = n, …, 1 (9.21b)

Equations (9.10a), (9.15b), (9.16k) or (9.19b), and (9.21b) together provide the
explicit expressions for the dynamic equations of motion for the n-link, n-DOF serial
robot.

one-link planar armexample 9.1
For the one-link arm shown in Fig. 9.3, the only equation
of motion is derived here using the concept of the
DeNOC matrices. Using Eqs. (9.6a-b), the DeNOC
matrices for the one-link arm are given by

 N = NlNd = p, where Nl = 1, and Nd = p (9.22)

The inertia term, which is a scalar for the one-link
arm, is then obtained from Eq. (9.15b) as

I(∫ i11) = pTM̃ p = eTIe + m(e ¥ d)T (e ¥ d);

where
È ˘

∫ Í ˙¥Î ˚

e
p

e d
;

m

È ˘
∫ = Í ˙

Î ˚

I O
M M

O 1
 (9.23a)

In Eq. (9.23a), no subscript is used to the vector and matrix notations, as there
is only one link and one joint. Now, the 3-dimensional vectors e and d in the fixed
frame, i.e., frame 1, are obtained as

 [e]1 ∫ [0 0 1]T; [d]1 ∫
1 1

0
2 2

T

ac as
È ˘
Í ˙Î ˚

 (9.23b)

where s ∫ sin q and c ∫ cos q. Moreover, the 3 × 3 inertia matrix I for the one-link
arm about its mass center C represented in the link-fixed frame, i.e., frame 2, is
written using Eq. (8.22b) as

 [I]2 =
2

0 0 0

0 1 0
12

0 0 1

ma
È ˘
Í ˙
Í ˙
Í ˙Î ˚

 (9.23c)

Fig. 9.3 One-link arm

SIR_09.indd 294 4/22/2014 6:39:54 PM

Recursive Robot Dynamics 295

Using Eq. (8.82), one can write

 [I]1 = Q[I]2 QT =

2

2
2

0

0
12

0 0 1

c sc
ma

sc s

È ˘
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

 (9.23d)

where Q is the 3 × 3 rotation matrix given by

 Q =

0

0

0 0 1

c s

s c

-È ˘
Í ˙
Í ˙
Í ˙Î ˚

 (9.23e)

Substituting Eqs. (9.23d) in Eq. (9.23a), one gets

 I = 21

3
ma (9.23f)

Next, the VCI is obtained using Eq. (9.16k), where for the one-link case, B11 = 1,
BT

21H̃
21 = O, as it does not arise, and M̃ ¢ ∫ M¢ = WM. Hence,

C(∫ c11) = pT (MW + WM)p = q̇eT [(Ie ¥ e) + (e ¥ Ie) – md ¥ d] = 0 (9.24a)

where the expression of the 6 × 6 matrices W and W used above are given by

 W =
q

q

È ˘
Í ˙
Í ˙Î ˚

¥
¥

e 1 O

O e 1

 and W =
1qÈ ˘¥

Í ˙
Î ˚

e O

O O

 (9.24b)

Moreover, the 6-dimensional vector p and the 6 × 6 matrix M are given in Eq.
(9.23a). Furthermore, the properties of vector products were used in obtaining the
result of Eq. (9.24a), i.e., d ¥ d = 0, and eT (e ¥ Ie) = 0 or eT (eI ¥ e) = 0. The latter
results are due to the fact that vector e is orthogonal to the one that is obtained from
the cross-product e × Ie or Ie × e. Finally, the generalized force is obtained from Eq.
(9.21b) as

 t1 = NTwE =
1

[()]
2

T T mgast
È ˘

¥ = -Í ˙
Î ˚

n
e e d

f
 (9.24c)

where the external moments due to the actuator and external force due to gravity
represented in frame 1 are given as

 [n]1 ∫ [0 0 t]T, [f]1 ∫ [mg 0 0]T (9.24d)

It is pointed out here that for the simple systems like the one in this example, it
may be easier to obtain the dynamic equation of motion given by Eqs. (9.23f) and
(9.24c) from the direct application of the expressions in terms of the NOC matrix that
appear after Eq. (9.10a).

one-link arm using mupaDexample 9.2
Figure 9.4 shows how to develop the equation of motion of the one-link arm of
Example 9.1 in the MuPAD environment.

SIR_09.indd 295 4/22/2014 6:39:54 PM

Introduction to Robotics296

Fig. 9.4 MuPAD commands for the dynamics of one-link arm

SIR_09.indd 296 4/22/2014 6:39:54 PM

Recursive Robot Dynamics 297

two-link planar armexample 9.3
A two-link planar arm with two revolute joints is shown in Fig. 9.5. The manipulator
has two degrees of freedom, whose independent coordinates are the joint angles q1
and q2. Correspondingly, the joint rates are q̇1 and q̇2. The 2-dimensional joint-rate
vector q̇ is then defined as

 q̇ ∫ [q̇1, q̇2]
T (9.25)

The link lengths are a1 and a2, and the masses are m1 and m2. The elements of the
generalized inertia matrix (GIM) are then calculated using Eq. (9.15b) as follows:
For i, j = 2, the calculation of i22 is shown below

 i22 ∫ pT
2 M̃

2B22 p2 (9.26a)

where

 p2 ∫
2

2 2

È ˘
Í ˙¥Î ˚

e

e d
; B22 ∫

È ˘
Í ˙
Î ˚

1 O

O 1
; and

2
2 2

2m

È ˘
= ∫ Í ˙

Î ˚

I O
M M

O 1
 (9.26b)

Fig. 9.5 Two-link planar arm

where [e2]2 ∫ [e2]1 ∫ [0, 0, 1]T is the unit vector along the axis of the second revolute
joint, as indicated in Fig. 9.5. Vector d2 is the position of C2, whereas I2 is the inertia
tensor about C2. Using Eq. (9.26b) and assuming the mass center lies at the center
of the link length, i.e., d2 = a2/2, the (2,2)-element of the GIM i22 is then explicitly
obtained, similar to I(∫i11) of Example 9.1 as

 i22 = [e2]
T
1 [I2]1 [e2]1 + m2[d2]1

T [d2]1

 =
1 1

12 3
2 2 2

2 2 2 2 2 2
1

4
m a m a m a+ = (9.27a)

Next, for i = 2, j = 1, the element i21 is given next as

 i21 = pT
2 M̃

2B21 p1, where p1 ∫ 1 1 1()
TT TÈ ˘¥Î ˚e e d (9.27b)

SIR_09.indd 297 4/22/2014 6:39:54 PM

Introduction to Robotics298

and the matrix B21 is given by

 B21 =
1 2()

È ˘
Í ˙- + ¥Î ˚

1 O

r d 1 1
 (9.27c)

where r1= a1 – d1. Hence, the (2,1)-element of the GIM, i.e., i21 is calculated, similar
to i22, as

 i21 = eT
2 I2 e1 + m2(e2 ¥ d2)

T [e1 ¥ (a1 + d2)] = eT
2 I2e1 + m2d

T
2 a1 + m2dT

2d2

 =
1

12
m2a

2
2 +

1

2
m2a1a2c2 +

1

4
m2a

2
2 =

1

3
m2a

2
2 +

1

2
m2a1a2c2 (9.27d)

In Eq. (9.27d), the vector product rule, namely, (a × b)T(c × d) = (aTc)(bTd) –
(aTd) (bTc) was applied. Moreover, e1 = e2, e2

Te2 = 1 because e2 is a unit vector, and
e2

Td1 = 0 because e2 is orthogonal to d1. Furthermore, di = ai/2, ri + di = ai, for i = 1,

2, and dT
2 a1 =

1

2
a1a2c2. Next, matrix M̃

1 is calculated as

 M̃
1 = M1 + BT

21M̃
2B21 = 1 1

1 1m

È ˘- ¥
Í ˙¥Î ˚

I 1

1 1

d

d
 (9.28a)

where Ĩ1, d̃1, and m̃1 are given below.

 Ĩ1 = I1 + I2 – m2c21 ¥ (d̃1 ¥ 1); d̃1 = m2c21; and m̃1 = m1 + m2 (9.28b)

in which Ĩ2 ∫ I2, d̃2 = 0, and m̃2 = m2 are used. Now, for i, j = 1, the (1, 1)-element of
the GIM i11 is now found as

 i11 = 2 2 2
1 1 1 1 1 1 1 1 2 2 2 1 2 1 2 2

1
()

3
T Tm m a m a m a m a a c+ = + + +e I e d d (9.29)

For i,j = 2, 1, the MCI elements are given from Eq. (9.16k) as

 c22 = pT
2[(BT

32H̃32 + BT
22(M̃

2W2 + M̃
2¢)]p2 = 0 (9.30a)

 c21 = pT
2[H̃21 + M̃

2B21W1 + M̃
2¢B21]p1 = 2 1 2 2 1

1

2
m a a s q (9.30b)

 c12 = pT
1[B

T
31H̃32 + BT

21(M̃
2W2 + M̃

2¢)]p2 = 2 1 2 2 1 2
1

()
2

m a a s q q- + (9.30c)

 c11 = pT
1[BT

21H̃21 + BT
11(M̃

1W1 + M̃
1¢)]p1 = 2 1 2 2 2

1

2
m a a s q- (9.30d)

In Eqs. (9.30a-d), H̃32 ∫ O and M̃
2¢p2 = 0 were used. Moreover, for planar robots,

it can be shown that the term T T
i ji j j jp B M p W , for i,j = 1, 2, vanishes. Finally, the

elements of vector h can be shown to have the following expressions:

 h2 = 2
2 2 2 1 2 2 1

1

2
T m a a s q=¢p w (9.31a)

 h1 = 1 1 2 1 2 2 2 1 2
1

2
T m a a s q q qÊ ˆ= - +¢ Á ˜Ë ¯p w (9.31b)

which are nothing but the result of the multiplication of the elements of the MCI,
Eqs. (9.30a-d), with those of the joint rate vector q̇ of Eq. (9.25).

SIR_09.indd 298 4/22/2014 6:39:55 PM

Recursive Robot Dynamics 299

9.3 RecURsiVe inVeRse Dynamics oF RoboanalyzeR†

Inverse dynamics is defined as “given a robot’s geometrical and inertial parameters,
along with its joint motions, find the joint torques and forces.” In this section, it
is emphasized that for the purpose of inverse dynamics analysis it is not required
to explicitly evaluate the matrices and vectors appearing in Eq. (9.10a), as the
required right-hand side can be evaluated using a recursive order (n) algorithm
(Saha, 1999), where n is the number of links in the robot manipulator. A recursive
algorithm in the C++ program was initially developed for the dynamic analysis of
serial robots, which was given an acronym RIDIM (Recursive Inverse Dynamics
for Industrial Manipulators) (Marothiya and Saha, 2003). Later, it was superseded
with RoboAnalzyer (RA) which was written in C# and based on a similar algorithm
called ReDySim (Recursive Dynamics Simulator) (Shah et al., 2013) using the
DeNOC matrices. The RA in comparison to ReDySim has many additional features
like 3-dimensional models of robots with animation, kinematic analyses, trajectory
planning, etc. See Appendix C for more details.

 The recursive algorithm (Saha, 1999) implemented in RoboAnalyzer is presented
next. It has two recursions, namely, forward and backward. They are given below:

1. Forward Recursion (Kinematic Equations)

 1 1 1;q=t p 1 1 1 1 1 1q q= +t p p W (9.32a)

 2 1 2 2;q= +21t B t p 2 21 1 21 1 2 2 2 2 2q q= + + +t B t B t p p W (9.32b)

	

 , 1 1 ;n n n n n nq- -= +t B t p , 1 1 , 1 1n n n n n n n n n n n nq q- - - -= + + +t B t B t p p W (9.32c)

where the 6 × 6 matrix Wi was defined as after Eq. (9.10b).

2. Backward Recursion (Dynamic Equations)

 ;n n n n n n n n= + =w M t W M t w w ; T
n n nt = p w (9.33a)

 1 1 1 1 1 1 1 1 , 1; T
n n n n n n n n n n n- - - - - - - - -= + = +w M t W M t w w B w ;

 1 1 1
T

n n nt - - -= p w

 (9.33b)

 1 1 1 1 1 1 1 1 21 2; T= + = +w M t W M t w w B w ; 1 1 1
Tt = p w (9.33c)

where ti, ṫi and wi are the 6-dimensional vectors of twist, twist-rate, and the resultant
wrench on the uncoupled ith link. In the above algorithm, no moment and force, i.e.,
wrench, acting on the end-effector was
considered. In case of their presence they
should be appropriately included, i.e., Eq.
(9.33a) is modified as

 wn = Mnṫn + WnMntn – wN
n (9.34)

where wN
n is the wrench acting on the

end-effector by the environment. Rest of

multiplication vs. Division
In computer calculations, a multiplication
is treated similar to a division due to the
internal algorithms used by a computer.
Hence, (a*b)/c needs two multiplications
(M).

† The dynamics algorithm of RoboAnalyzer reported here is basically same as that of Recursive Inverse
Dynamics for Industrial Manipulators (RIDIM) appeared in the 1st edition of this book.

SIR_09.indd 299 4/22/2014 6:39:55 PM

Introduction to Robotics300

the step remains same. Moreover, if gravity is present it is taken into account by
providing negative acceleration due to the gravity, denoted by g, to the first body, i.e.,
link #1 (Luh, Walker and Paul, 1980). Accordingly, ṫ1 of Eq. (9.32a) is modified as

 1 1 1 1 1 1q q= + +t p p W r , where [,]T T∫ -0 gr (9.35)

Now, for an all revolute-jointed serial robotic manipulator, the computational
complexity of the above algorithm is shown in Table 9.1, which is compared with
some other existing inverse dynamics
algorithms. The details of how to calculate
the computational complexity are
appeared in Appendix A of Shah et al.
(2013). The above algorithm is one of the
best. Besides, it is very simple, as evident
from the two-step algorithm where six-
dimensional vectors are treated similar to those of three dimensional vectors of
recursive Newton-Euler algorithm as presented in Chapter 8. A close look into the
algorithms actually exposes that both are fundamentally same. The latter one is,
however, more elegant and concise. That is, if one knows t1 finding out t2 is very
similar to the evaluation of the linear velocity of link #2 from the known linear
velocity of link #1.

table 9.1 Computational complexities for inverse dynamics

Algorithm Multiplications/
Divisions (M)

Additions/
Subtractions (A)

n = 6

Hollerbach (1980) 412n – 277 320n – 201 2195M 1719A

Luh et al. (1980) 150n – 48 131n + 48 852M 834A

Walker and Orin (1982) 137n – 22 101n – 11 800M 595A

RIDIM (Saha, 1999) 120n – 44 97n – 55 676M 527A

Khalil et al. (1986) 105n – 92 94n – 86 538M 478A

Angeles et al. (1989) 105n – 109 90n – 105 521M 435A

ReDySim (Shah et al., 2013) 94n – 81 82n – 75 483M 417A

Balafoutis et al. (1991) 93n – 69 81n – 65 489M 421M

inverse Dynamics of three-DoF planar armexample 9.4
The three-link three-DOF manipulator under study, is shown in Fig. 9.6, whose DH
and inertia parameters are shown in Table 9.2. It is assumed that the manipulator
moves on the X-Y plane, where the gravity is working in the negative Y direction.
Let i and j be the two unit vectors parallel to the axes X and Y, respectively, and k =
i × j is the one parallel to Z-axis. The three joint torques, namely, t1, t2, and t3, were
evaluated using RoboAnalyzer software. The joint angles used to generate the joint
torques are as follows: For i = 1, 2 and 3,

addition vs. subtraction
In computer calculations, an addition is
similar to a subtraction due to the internal
computer algorithms. Hence, computation
count to find a + b – c is two additions
(A).

SIR_09.indd 300 4/22/2014 6:39:55 PM

Recursive Robot Dynamics 301

() (0) 2

(0) sin
2

i i
i i

T T
t t

T T

q q p
q q

p
È ˘- Ê ˆ= + -Í ˙Á ˜Ë ¯Î ˚

 (9.36a)

() (0) 2

1 cosi i
i

T
t

T T

q q p
q

È ˘- Ê ˆ= -Í ˙Á ˜Ë ¯Î ˚
 (9.36b)

() (0) 2 2

sini i
i

T
t

T T T

q q p p
q

È ˘- Ê ˆ= Í ˙Á ˜Ë ¯Î ˚
 (9.36c)

where T = 10 seconds. The initial and final joint values were taken as qi(0) = 0 and
qi(T) = p. Moreover, Eqs. (9.36a-c) guarantee that (0) (0) ()i i i Tq q q= = = ()i Tq =
0, for i = 1, 2, 3. The plots for the joint angle and their time derivatives are shown in
Fig. 9.7, the joint torques obtained from RoboAnalyzer are then plotted in Fig. 9.8,
where the terms, t1, t2, and t3, are the joint torques. The plots were also verified with
those obtained from the explicit expressions available in many textbooks on robotics,
e.g., Angeles (2003).

Fig. 9.6 Three-DOF planar robot arm

table 9.2 The DH and inertia parameters of the three-DOF robot arm

(a) DH parameters

Link Joint ai (m) bi (m) ai (rad) qi (rad)

1 r 0.3 0 0 JV [0]

2 r 0.25 0 0 JV [0]

3 r 0.22 0 0 JV [0]
JV: Joint variable with initial values inside brackets [and]; r: Revolute joint

(b) Mass and inertia parameters

Link mi ri,x ri,y ri,z Ii,xx Ii,xy Ii,xz Ii,yy Ii,yz Ii,zz

(kg) (m) (kg-m2)

1 0.5 0.15 0 0 0 0 0 0.00375 0 0.00375

2 0.4 0.125 0 0 0 0 0 0.00208 0 0.00208

3 0.3 0.11 0 0 0 0 0 0.00121 0 0.00121

SIR_09.indd 301 4/22/2014 6:39:55 PM

Introduction to Robotics302

Fig. 9.7 Joint trajectory

A screenshot of the 3-dimensional view of the 3-DOF robot arm in RoboAnalyzer
with its kinematic parameters visible at the bottom of the screen are shown in
Fig. 9.9.

Fig. 9.8 Joint torques for the three-DOF arm

SIR_09.indd 302 4/22/2014 6:39:56 PM

Recursive Robot Dynamics 303

Fig. 9.9 RoboAnalyzer screenshot of three-link robot arm

inverse Dynamics of pUma architectureexample 9.5
For the six-DOF robot with PUMA architecture shown in Fig. 9.10, the inverse dy-
namics results were obtained for its DH and inertial parameters shown in Table 9.3.

table 9.3 The DH and inertia parameters of PUMA robot

(a) DH parameters

Link Joint bi (m) qi (rad) ai (m) ai (rad)

1 r 0 JV [0] 0 –p/2

2 r 0.149 JV [0] 0.432 0

3 r 0 JV [0] 0.02 –p/2

4 r 0.432 JV [0] 0 –p/2

5 r 0 JV [0] 0 –p/2

6 r 0.05 JV [0] 0 0
JV: Joint variable with initial values inside [and]; r: Revolute joint

(b) Mass and inertia parameters

Link mi ri,x ri,y ri,z Ii,xx Ii,xy Ii,xz Ii,yy Ii,yz Ii,zz

(kg) (m) (kg-m2)

1 10.521 0 0 0.054 1.612 0 0 1.612 0 0.5091

2 15.761 0.292 0 0 0.4898 0 0 8.0783 0 8.2672

3 8.767 0.02 0 –0.197 3.3768 0 0 3.3768 0 0.3009

4 1.052 0 –0.057 0 0.181 0 0 0.1273 0 0.181

5 1.052 0 0 –0.007 0.0735 0 0 0.1273 0 0.0735

6 0.351 0 0 0.019 0.0071 0 0 0.0071 0 0.0141

SIR_09.indd 303 4/22/2014 6:39:57 PM

Introduction to Robotics304

Note that the DH frames in Fig.
9.10 are assigned little differently,
namely, frames 5 and 6, compared to
those in Fig. 6.6 for the same robot.
Hence, there are some changes in the
DH parameters in Table 9.3 compared
to those in Table 6.2. This was done
intentionally to illustrate the variation
in the assignment of DH frames for
the same architecture of a robot. The
trajectory functions for each joint is
taken same as for the three-link robot
arm, as defined in Eq. (9.36a-c) for
the same T, and initial and final joint
values. Corresponding joint torque
plots generated from RoboAnalyzer
software are given in Figs. 9.11(a-f).

Fig. 9.10 A PUMA architecture

(Contd.)

SIR_09.indd 304 4/22/2014 6:39:57 PM

Recursive Robot Dynamics 305

Fig. 9.11 Joint torques for PUMA architecture

inverse Dynamics of stanford armexample 9.6
For the Stanford arm shown in Fig. 9.12, the DH and other parameters are shown
in Table 9.4. Note that it differentiates from the PUMA robot in a way that it has a
prismatic joint in joint location 3. Moreover, the DH frames are assigned differently
than in Fig. 6.8(a) due to the reasons cited for PUMA robot of Example 9.5. The
functions for the revolute joints were taken same as in Example 9.5, whereas the
function of the prismatic joint variable, namely b3 is taken as

 bi =
() (0) 2

(0) sin
2

i i
i

b T b T
b t t

T T

p
p

È ˘- Ê ˆ+ -Í ˙Á ˜Ë ¯Î ˚
 (9.37)

Fig. 9.12 The Stanford arm

SIR_09.indd 305 4/22/2014 6:39:57 PM

Introduction to Robotics306

table 9.4 The DH and inertia parameters of the Stanford arm

(a) DH parameters

Link Joint bi (m) qi (rad) ai (m) ai (rad)

1 r 0.762 JV [0] 0 –p/2

2 r 0.393 JV [–p/2] 0 p/2

3 p JV [0.635] 0 0 0

4 r 0.227 JV [0] 0 –p/2

5 r 0 JV [p] 0 –p/2

6 r 0.432 JV [p] 0 0
JV: Joint variable with initial values within [and]; r: Revolute joint; p: Prismatic joint

(b) Mass and inertia parameters

Link mi ri,x ri,y ri,z Ii,xx Ii,xy Ii,xz Ii,yy Ii,yz Ii,zz

(kg) (m) (kg-m2)

1 9 0 –0.1 0 0.01 0 0 0.02 0 0.01

2 6 0 0 0 0.05 0 0 0.06 0 0.01

3 4 0 0 0 0.4 0 0 0.4 0 0.01

4 1 0 –0.1 0 0.001 0 0 0.001 0 0.0005

5 0.6 0 0 –0.06 0.0005 0 0 0.0005 0 0.0002

6 0.5 0 0 –0.2 0.003 0 0 0.001 0 0.002

For T = 10 seconds, initial joint values were taken as follows:

q1(0) = 0, q2(0) = –p/2, b 3 (0) = 0.635 m, q4(0) = 0, q5(0) = q6(0) = p

q1(T) = p/3, q2(T) = –5p/6, b 3 (T) = 0.735 m, q4(T) = p/3, q5(T) = q6(T) = 5p/6

The above values were taken in a way so that the robot links do not interfere
with each other. The joint torques and force were obtained using RoboAnalzyer are
plotted in Figs. 9.13(a-f).

(Contd.)

SIR_09.indd 306 4/22/2014 6:39:58 PM

Recursive Robot Dynamics 307

Fig. 9.13 Joint torques and force for Stanford arm

inverse Dynamics of KUKa KR-5 Robotexample 9.7
In this example, a practically used industrial robot, namely, KUKA KR-5 (5 stands
for the 5 kg payload capacity of the robot), is taken up. The CAD model available
from the company’s website (WR: Kuka)
has been processed in Autodesk Inventor
software to extract the DH parameters of
the robot using an in-house developed
add-in for the Autodesk Inventor software
(Rajeevlochana, 2012). They are shown
in Table 9.5(a), whereas the mass and
inertia properties were taken from the
CAD model, as shown in Table 9.5(b).
The function of the trajectory for each
joint was taken same as in Eq. (9.36a-c)
with qi (0) = 0 and qi (T) = p/3, and T = 10
seconds. Here, the joint trajectories were
taken in a way that the robot links do not
interfere with each other. The Cartesian
trajectory followed by the robot is shown
in Fig. 9.14, whereas the required torque
plots are given in Fig. 9.15.

Fig. 9.14 KUKA KR-5 during its motion

SIR_09.indd 307 4/22/2014 6:39:58 PM

Introduction to Robotics308

Fig. 9.15 Joint torques for KUKA KR-5

table 9.5 The DH and inertia parameters of KUKA KR-5 robot
(a) DH parameters

Link Joint bi (m) qi (rad) ai (m) ai (rad)

1 r 0.4 JV [0] 0.180 p/2

2 r 0.135 JV [0] 0.600 p
3 r 0.135 JV [0] 0.120 –p/2

4 r 0.620 JV [0] 0 p/2

5 r 0 JV [0] 0 –p/2

6 r 0.115 JV [0] 0 0
JV: Joint variable with initial values within [and]; r: Revolute joint (Contd.)

SIR_09.indd 308 4/22/2014 6:39:58 PM

Recursive Robot Dynamics 309

(b) Mass and inertia parameters

mi ri,x ri,y ri,z Ii,xx Ii,xy Ii,xz Ii,yy Ii,yz Ii,zz

(kg) (m) (kg-m2)

26.98 0.091 0.067 0.006 0.322 –0.018 –0.145 0.467 –0.014 0.478

15.92 0.333 0.002 0.039 0.541 0.000435 –0.005 0.552 0.017 0.044

25.852 0.032 –0.008 –0.034 0.775 –0.009 0.025 0.75 0.007 0.208

4.008 0 0.109 –0.008 0.01 0.002 0 0.02 0 0.024

1.615 0 –0.01 –0.033 0.002 0 0 0.004 0 0.004

0.016 0 0 –0.111 0 0 0 0 0 0

9.4 RecURsiVe FoRWaRD Dynamics anD simUlation
Forward dynamics is defined as “given the joint torques and forces, along with the
robot’s physical parameters, find the joint accelerations, i.e., solve for the joint
accelerations q̈ from the dynamic equations of motion Eq. (9.10a).” Simulation, on
the other hand, involves forward dynamics followed by the solution of the differential
equations in joint accelerations to obtain
the joint velocities and positions, i.e., q̇
and q, respectively, for a given set of
initial joint rates and positions of the
manipulator under study, i.e., q̇(0) and
q(0).

9.4.1 Recursive Forward Dynamics algorithm
Conventionally, joint accelerations are solved from Eq. (9.10a) using the Cholesky
decomposition of the GIM I, as done by Walker and Orin (1982), Angeles (2003),
and others, or using the MATLAB command “I\f” (WR-Matlab), where f represents
the vector of generalized forces due to external moments and forces, gravity and
Coriolis terms, etc. The above approach requires order (n3)—n being the number
of links or joints in the robot—computations, and produces nonsmooth joint
accelerations (Ascher et al., 1997). On the contrary, the dynamic formulation based
on the Decoupled Natural Orthogonal Complement (DeNOC) matrices presented
in this chapter allows one to solve q̈ from Eq. (9.10a) recursively with order (n)
computational complexity (Saha, 1999; 2003). Such recursive algorithms are known
to provide smooth profiles for q̈, as reported in Ascher at al. (1997), Mohan and Saha
(2007), Shah et al. (2013), and others.

In this section, a recursive order (n) forward dynamics algorithm is presented,
which requires the following inputs: For i =1, …, n,
1. DH parameters, and the mass and inertia properties of all links, as they are shown

in Tables 9.2–9.4.
2. Initial values for the variable DH parameters, i.e.,qi, for a revolute joint, and bi,

for a prismatic joint, and their first time derivatives, i.e., q̇i s and ḃis.
3. Time history of the input joint forces/torques, i.e., ti.

Why “Forward?”

This step of simulation leads to the
behavior of a robot as if a the robot exists
and one moves it. Hence, the word forward
is used.

SIR_09.indd 309 4/22/2014 6:39:59 PM

Introduction to Robotics310

4. Each component of the vector, f ∫ t – h, obtained from Eq. (9.10a), i.e., fi,
which is to be calculated recursively using an inverse dynamics algorithm, e.g.,
the one given in Section 9.3 while q̈ = 0.

The recursive forward dynamics algorithm presented here is based on the UDUT
decomposition of the generalized inertia matrix, I of Eq. (9.10a), i.e., I = UDUT, where
U and D are the upper triangular and diagonal matrices, respectively. Moreover,
substituting I = UDUT and j ∫ t – h in Eq. (9.10a), one obtains

 UDUTq̈ ∫ f (9.38)

A three step recursive scheme is then used to calculate the joint accelerations from
the above equations, i.e.,

1. Solution for f̂ : The solution f̂ = U–1f is evaluated in terms of the scalar terms
as

 f̂i = fi – pT
i h i,i+1, for i = n, º, 1 (9.39a)

Note f̂n ∫ fn, and the 6-dimensional vector h i,i+1 is obtained as

 h i,i+1 ∫ BT
i+1,i hi+1 and hi+1 ∫ yi+1 f̂i+1 + h i+1,i+2 (9.39b)

in which h n,n+1 = 0. The new variable yi+1 is the 6 × 6 matrix which is evaluated using

 yi ∫
ˆ

ˆ
i

im

y
, where ˆˆ ˆˆand T

i i i i i im∫ ∫M p py y (9.39c)

In Eq. (9.39c), the 6 × 6 matrix M̂
i called the articulated body inertia (Saha, 1997;

1999) that can be obtained recursively, similar to M̃
i in Eq. (9.11d), as

 M̂
i ∫ 1, 1 1,

T
i i i i i i+ + ++M B M B , where 1 1 1 1

ˆ ˆ T
i i i i+ + + +∫ -M M y y (9.39d)

for i = n–1, …, 1, and M̂
n = Mn.

2. Solution for f̃ : The solution 1 ˆ-= Df f involves the inverse of the diagonal matrix,
D of Eq. (9.38), which is simple. The inverse D–1 has only nonzero diagonal elements
that are the reciprocal of the corresponding diagonal elements of D. Vector f̃ is
obtained as follows: For i = 1, …, n,

 ˆ ˆ/i i imj f= (9.40)

The scalar m̂ i is defined in Eq.(9.39c).

3. Solution for q̈: In this step, T-= U q f is calculated for i = 2, …, n as

 , 1
ˆ T

i i i i iq j -= - y m (9.41a)

where 1 1q f∫ , and the 6-dimensional vector m̃ i,i–1 is obtained as

 , 1 , 1 1 1 1 1 1, 2andi i i i i i i i i iq- - - - - - - -∫ ∫ +B p m m m m (9.41b)

in which 10 0∫m . The above forward dynamics algorithm (Saha, 1997; 2003) is
the basis for ReDySim (Shah et al., 2013) which can also take care of the tree-type
systems like biped and walking robots with one-, two-, and three-DOF joints, i.e.,
revolute, universal and spherical joints, respectively. Table 9.6 shows the comparison
of various forward dynamics algorithms, along with the one for ReDySim which was

SIR_09.indd 310 4/22/2014 6:39:59 PM

Recursive Robot Dynamics 311

adopted in RoboAnalyzer software. Typically, recursive dynamics algorithms are
known to be computationally efficient when n ≥ 10 or 12. However, the ReDySim-
based algorithm adopted in RoboAnalyzer is efficient even for n ≥ 7.

It is pointed out here that the use of the DeNOC matrices for forward dynamics
is more advantageous in comparison to inverse dynamics algorithm, as evident
from Tables 9.1 and 9.6. Besides, as shown in Agrawal (2013), the ReDySim-based
forward dynamics algorithm is extremely stable numerically for the reason explained
in the paper.

9.4.2 simulation
Simulation consists of forward dynamics to find the joint acceleration q̈ followed
by its integration to obtain q̇ and q for a given set of initial conditions, i.e., q̇ (0)
and q(0). As pointed out in Chapter 8 that except in extremely simple cases the
integration needs to be done numerically either using well-established methods like
Runge–Kutta–Fehlberg, Adams–Bashforth–Moulton and others (Shampine, 1994),
or MATLAB commands like “ODE45”, etc. (WR-Matlab). In this section, simulation
results were generated using RoboAnalyzer where a computer program in C# was
written for the numerical integration using Runge–Kutta–Fehlberg formula.

table 9.6 Computational complexities for forward dynamics

Algorithm Multiplications/
Divisions (M)

Additions/
Subtractions (A)

n = 6 n = 7 n = 10

ReDySim
(Shah et al., 2013)

135n – 116 131n – 123 694M
663A

829M
794A

1234M
1187A

Saha (2003) 191n – 284 187n – 325 862M
797A

1053M
984A

1626M
1545A

Featherstone (1983) 199n–198 174n – 173 996M
871A

1195M
1045A

1792M
1527A

Stejskal and
Valasek (1996)

226n − 343 206n − 345 1013M
891A

1239M
1097A

1917M
1715A

Brandl et al. (1988) 250n − 222 220n − 198 1278M
1122A

1528M
1342A

2278M
2002A

Walker and Orin
(1982)

n3/6 + 23 n2/2 +
115n/3 – 47

n3/6 + 7n2+
233n/3 – 46

633M
480A

842M
898A

1653M
1209A

An important aspect of smooth joint acceleration profiles available from a
recursive forward dynamics algorithm, as mentioned in Section 9.4.1, is elaborated
here. When the joint acceleration profile for q̈ is not smooth convergence of its
numerical integration to obtain the joint velocity and position, i.e., q̇ and q, is slow.
Alternatively, with smooth q̈ profile obtained from a recursive forward dynamics
algorithm convergence of the numerical integration results is must faster. Hence,
the overall CPU time required for the forward dynamics and numerical integration
together using the recursive algorithm may be smaller even for n = 6 compared to an
order (n3) algorithm which requires less forward dynamics computations when n = 6
(see Table 9.6) but may require more time to perform the numerical integration. This
aspect was proven by Mohan and Saha (2007b).

SIR_09.indd 311 4/22/2014 6:39:59 PM

Introduction to Robotics312

simulation of the three-DoF planar armexample 9.8
The three-DOF arm shown in Fig. 9.6 is considered here to let fall freely under
gravity from the horizontal initial configuration with no initial motion, i.e., qi(0) =
q̇i(0) = 0, for i = 1, 2, 3. Time step DT for the numerical integration was taken as DT =
0.01 second. The results for the joint positions, namely, the variations of q1, q2, and
q3 with time are shown in Fig. 9.16. Note from Fig. 9.6 that due to the gravity the first
joint angle q1 will increase initially in the negative direction. This is evident from
Fig. 9.16. Moreover, the system under gravity behaves as a three-link pendulum,
which is clear from all the joint-angle variations of Fig. 9.16.

Fig. 9.16 Joint angles for the three-DOF arm

simulation of the pUma architectureexample 9.9
The robot with PUMA architecture is shown in Fig. 9.10. Its free-fall simulation, i.e.,
the robot was let fall freely under gravity, was carried out using RoboAnalyzer with
the initial conditions of qi(0) = q̇i(0) = 0, for i = 1, …, 6. The time step DT = 0.01
second was taken for the numerical integration. Variations of the joint angles versus
time are shown in Figs. 9.17(a–f). It is
clear from Fig. 9.10 that due to the length
a3 = 0.02, joint 2 will rotate in the positive
direction, which is evident from
Fig. 9.17(b).

What is “Free?”

The joints are free without any applied
torques.

SIR_09.indd 312 4/22/2014 6:39:59 PM

Recursive Robot Dynamics 313

Fig. 9.17 Joint angles for the PUMA architecture

simulation of the stanford armexample 9.10
Free-fall simulation of the Stanford arm shown in Fig. 9.12 was carried out with the
following initial values of the joint positions and rates:

	 q1(0) = 0, q2(0) = –p/2, b 3 (0) = 0.635 m, q4(0) = 0, q5(0) = q6(0) = p
	 q̇i (0) = 0, for i = 1, 2, 4, 5, 6, and ḃ3(0) = 0
Time step DT for numerical integration was taken same as before, i.e., DT = 0.01

second. The joint position results obtained from RoboAnalyzer are then shown in
Figs. 9.18(a–f). Since the initial configuration of the Stanford arm given in

SIR_09.indd 313 4/22/2014 6:40:00 PM

Introduction to Robotics314

Table 9.4(a), the motion of Joint 3 should increase sharply after one second when
Joint 2 turns more than 90°. This is evident from Figs. 9.18(b) and (c), respectively.
Once can visualize the same in the animation of RoboAnalyzer software.

Fig. 9.18 Joint angles and displacement for the Stanford arm

simulation of the KUKa KR-5example 9.11
The industrial robot considered for inverse dynamics analysis in Example 9.7 is
considered here for free-fall simulation. The initial joint configuration is shown
in Table 9.5. While variation of the joint angles are shown in Figs. 9.19(a-f), an
intermediate configuration during the animation in RoboAnalyzer software is shown
in Fig. 9.20. If one looks at the animation screenshot of Fig. 9.20 carefully, one
can notice that the robot links interfere during the motion which is actually not

SIR_09.indd 314 4/22/2014 6:40:00 PM

Recursive Robot Dynamics 315

permissible. Hence, such simulation tool allows a motion planner to decide the range
of motion be allowed during actual motion of the robot.

Fig. 9.19 Joint angles for KUKA KR-5 robot

Fig. 9.20 RoboAnalyzer screenshot during free-fall simulation of KUKA KR-5

SIR_09.indd 315 4/22/2014 6:40:00 PM

Introduction to Robotics316

sUmmaRy
In this chapter, dynamic modeling of serial robots using the Decoupled Natural Orthogonal
Complements (DeNOC) is presented. Recursive inverse and forward dynamics algorithms
are presented for robot control and simulation, respectively. Computational complexities
of both the algorithms are reported with illustrative results for planar and spatial robotic
systems using an in-house developed software called RoboAnalyzer.

exeRcises
9.1 What is inverse dynamics?
9.2 Define forward dynamics and its difference in context with simulation.
9.3 Why the concept of the DeNOC matrices is preferable over other dynamic modeling

approaches?
9.4 What is the meaning of orthogonal in DeNOC?
9.5 For forward dynamics using the DeNOC matrices, for how many links in a robot is the

algorithm more efficient?
9.6 Find the expression of kinetic energy of one-link arm, Eq. (8.56a), using the DeNOC

matrices.
9.7 Derive the equation of motion of one-link arm, Fig. 9.4, using the matrix and vector

expressions of the NOC matrix N appearing after Eq. (9.10a).
9.8 Write the expression of the total kinetic energy for an n-link robot manipulator using the

definition of the generalized twist t given in Eq. (9.3c).
9.9 Redo Exercise 9.7 using the definition of the generalized joint-rate q̇ of Eq. (9.3c).
9.10 What is UDUT and what does it perform?
9.11 Generate joint torque plots for the Example 9.4 using the following explicit

expressions:

 Iq̈ + Cq̇ = tg + t, where q ∫ [q1 q2 q3]
T (9.42a)

 where the 3 × 3 GIM and MCI matrices I and C, respectively, and the 3-dimensional
vector tg due to gravity are given by

2 2 2 2 2 2
11 1 1 2 2 3 3 2 1 3 1 2 2 3 1 2 2

3 3 2 3 1 23

2 2 2
12 21 2 2 3 3 3 2 2 2 3 2 1 2

3 3 2 3 1 23

2
13 31 3 3 3 3 2 3

1
() () (2)

3
 ()

1 1
()

3 2
1

 (2)
2

1 1
(

3 2

i m a m a m a m a m a a m m a a c

m a a c a c

i i m a m a m a m a m a a c

m a a c a c

i i m a m a a c a

= + + + + + + +

+ +

Ê ˆ= = + + + +Á ˜Ë ¯

+ +

= = + + 1 23

2 2 2
22 2 2 3 3 3 2 2 3 3

2 2
23 32 3 3 3 2 3 3 33 3 3

)

1
() ()

3
1 1 1

;
3 2 3

c

i m a m a m a a a c

i i m a m a a c i m a

= + + +

= = + = (9.42b)

SIR_09.indd 316 4/22/2014 6:40:01 PM

Recursive Robot Dynamics 317

11 2 1 2 2 3 1 2 2 1 3 23 2 3 1 3 23 2 3 3 3

12 2 1 2 2 3 1 2 2 1 3 23 12 3 1 3 23 2 3 3 3

13 3 1 3 23 2 3 3 123

21 2 1 2 2 3 1 2 2 1 3 23 1

1
[{ (2)} ()]

2
1

[{ (2)} ()]
2
1

()
2

1
[{ (2)}

2

c m a a s m a a s a a s m a a s a a s

c m a a s m a a s a a s m a a s a a s

c m a a s a a s

c m a a s m a a s a a s

q q

q q

q

q

= - + + + +

= - + + + +

= - +

= + + -

3 2 3 3 3

22 3 2 3 3 3 23 3 2 3 3 123

31 3 1 3 23 2 3 3 1 2 3 3 2 32 3 2 3 3 12

33

]

1 1
;

2 2
1 1

[()];
2 2
0

m a a s

c m a a s c m a a s

c m a a s a a s a a s c m a a s

c

q

q q

q q q

= - = -

= + + =

=

 (9.42c)
 and

1 1 1 2 1 1 2 12 3 1 1 2 12 3 1231

1 1 1
[2 2

2 2 2
g g m a c m a c a c m a c a c a ct Ê ˆ Ê ˆ= - - + - + +Á ˜ Á ˜Ë ¯ Ë ¯

2 2 12 3 2 12 3 1232

1 1
2

2 2
g g m a c m a c a ct

È ˘Ê ˆ= - - +Á ˜Í ˙Ë ¯Î ˚

 3 3 1233
1

[]
2

g g m a ct = - (9.42d)

 where q12 ∫ q1 + q2; q123 ∫ q12 + q3; 12 1 2 123 12 3;q q q q q q∫ + ∫ + ; and () sin(.)∫s . ,
() cos(.)∫c . . Find the joint actuator torques, t, for plotting.

9.12 Verify the simulation results of Example 9.8 using the expressions of Eq. (9.42) and
“ODE45” function of MATLAB.

9.13 What are the features of RoboAnalyzer (RA)?
9.14 Using the RA software find the joint torques for the two-DOF planar manipulator shown

in Fig. 9.5.
9.15 Generate joint torques using RA for the three-DOF manipulator of Fig. 9.6 for the joint

trajectory given by Eqs. (9.36a-c) with the following inputs:

 qi(0) = (0) (0)i iq q= = 0; qi(T) = p/2, (0) (0)i iq q= = 0, for i = 1,2,3 (9.43)

SIR_09.indd 317 4/22/2014 6:40:01 PM

