Contents

xvii

Preface

Frejuce	XVII
 1. Groundwater: Introduction, Occurrence, and Assessment I.1 General 1 Groundwater Vis-À-Vis Surface Water 3 Groundwater: A Component of Hydrologic Cycle 4 Origin and Age of Groundwater 5 Definition of Groundwater 6 Porous Media Properties 7 Vertical Distribution of Subsurface Water 11 Surface Water and Groundwater Interaction 14 Groundwater Assessment 15 I.10 Climate Change and Groundwater 17 <i>Problems</i> 18 	1
 2. Groundwater: Aquifers and Indian Scenario 2.1 General 19 2.2 Types of Aquifers 20 2.3 Geologic Formations as Aquifers 22 2.4 Fence Diagrams 23 2.5 Aquifer Mapping 24 2.6 Indian Aquifers 26 2.7 Groundwater Resources Status of India 29 2.8 Groundwater Level 32 2.9 Trans-Boundary Aquifer Systems 32 Problems 35 	19
 3. Groundwater Prospecting 3.1 General 36 3.2 Geologic Method 37 3.3 Remote Sensing 37 3.4 Geophysical Exploration 38 3.5 Electric Resistivity Method 39 3.6 Seismic Method 48 3.7 Ground Penetrating Radar and Other Methods 53 3.8 Subsurface Investigation 54 Solved Examples 55 Problems 61	36

4. Well Logging and Construction

- 4.1 General 62
- 4.2 Type of Wells 63
- 4.3 Selection of Well Site 67
- 4.4 Well Logging 72
- 4.5 Well Construction Techniques 87
- 4.6 Well Completion 103
- 4.7 Piezometers and Water Table Observation Wells 110 Problems 111

5. Principles of Groundwater Movement in Porous Media 113

- 5.1 Darcy's Experimental Law 113
- 5.2 Hydraulic Head 114
- 5.3 Velocity Potential 114
- 5.4 Direction of Groundwater Flow 115
- 5.5 Hydraulic Conductivity and Intrinsic Permeability 116
- 5.6 Relation Between Darcy Velocity and Interstitial Velocity 118
- 5.7 Validity of Darcy's Law 118
- 5.8 Derivation of Darcy's Law from N S Equations 119
- 5.9 Homogeneity and Isotropy 121
- 5.10 Generalized Darcy's Equations 121
- 5.11 Laplace Equation 123
- 5.12 Stream Function 123
- 5.13 Flownet 125
- 5.14 Different Boundaries in a Porous Medium 128
- 5.15 Transformation of Inhomogeneous into Homogeneous Medium 130
- 5.16 Transformation of Anisotropic into Isotropic Medium 133
- 5.17 Flow Through Two Media (Flow Crossing Anisotropy) 138 Solved Examples 140 Problems 142

6. Theory of Groundwater Flow

- 6.1 Governing Equations in Cartesian Coordinates 146
- 6.2 Compressibility of Aquifers 149
- 6.3 Governing Equation Considering Compressibility 153
- 6.4 Dupuit—Forchhemeir Assumptions and 2-D Equations for Unconfined Flow 153
- 6.5 Solution and Boundary Conditions 155
- 6.6 Analytical Solutions for Simple Groundwater Flow Problems 157 Solved Examples 162 Problems 174

146

 7. Contaminant Transport in Groundwater 7.1 Origins of Groundwater Contamination 179 7.2 Classification of Groundwater Contamination 182 7.3 Transport Mechanism 184 7.4 GE for Contaminant Transport in Saturated Porous Media 190 7.5 Transport of Reactive Pollutants 195 Solved Examples 197 Problems 199 	179
 8. Groundwater Flow Solutions by Complex Analysis 8.1 General 201 8.2 Complex Numbers 201 8.3 Complex Function 202 8.4 Mapping 203 8.5 Conformal Mapping 204 8.6 Linear and Inverse Mapping Functions 205 8.7 Velocity Hodograph 206 8.8 Zhukovsky Functions 208 8.9 Schwarz-Christoffel Transformation 209 8.10 Mapping Examples 210 Solved Examples 217 Problems 235 	201
 9. Flow through Unsaturated Porous Media 9.1 General 240 9.2 Suction Pressure 241 9.3 Water Retention Characteristics 243 9.4 Hydraulic Conductivity Relations 250 9.5 Flow Equation in Unsaturated Porous Medium 253 9.6 Infiltration of Surface Water 256 Solved Examples 260 Problems 262 	240
 10. GE in Radial Coordinates and Steady-State Solutions 10.1 General 264 10.2 Governing Equations in Radial Coordinates 265 10.3 Steady-Flow Solutions 269 Solved Examples 296 Problems 301 	264
11. Unsteady State Solutions to Confined Aquifer Problems 11.1 Single-Well Solution 305 11.2 Computation of Well Function 308	305

- 11.3 Multiple Wells (Well Field) in a Confined Aquifer 311
- 11.4 Residual Drawdown 315
- 11.5 Wells Near Boundaries (Method of Images) 317
- 11.6 Stream Depletion 329
- 11.7 Unsteady Well Flow in Uniform Flow Field 331 Solved Examples 331 Problems 339

12. Unsteady-State Solutions to Special Cases 344

- 12.1 Single-Well Solution 344
- 12.2 Unconfined Aquifer 344
- 12.3 Leaky Aquifer 349
- 12.4 Partially Penetrating Well 357
- 12.5 Large Diameter Wells 363
- 12.6 Flowing Well 365
- 12.7 Multilayer Aquifer 367
- 12.8 Well Losses 369 Solved Examples 372 Problems 378

13. Estimation of Aquifer Parameters

- 13.1 General 382
- 13.2 Pumping Test Techniques 382
- 13.3 Confined Aquifer Parameters 385
- 13.4 Unconfined Aquifer Parameters 397
- 13.5 Leaky Aquifer Parameters 400
- 13.6 Slug Test Techniques 407
- 13.7 Other Techniques 419 Solved Examples 421 Problems 430

14. Design, Development, and Maintenance of Water Wells 432

382

469

- 14.1 General 432
- 14.2 Well Design 433
- 14.3 Well Development 449
- 14.4 Well Maintenance and Rehabilitation 458 Solved Examples 467 Problems 467

15. Managed Groundwater Recharge

- 15.1 Introduction 469
- 15.2 Objective and Purpose of MGR 471
- 15.3 Methods of MGR 471
- 15.4 Features of MGR Systems 486
- 15.5 Artificial Recharge Strategy and Identification of Potential Areas 487
- 15.6 Source Water Availability and Assessment 488

513

535

591

15.7	Reuse and Recycling Wastewater 493	
15.8	Recharge Mounds 496	
15.9	Recharge Scheme in Pal–Doli–Jhanwar Area 501	
15.10	MAR in NCT of Delhi-Like Metro Cities 503	
	Solved Examples 509	
	Problems 511	
16. Sali	ne Water Intrusion In Aquifers	51
16.1	General 513	
16.2	Occurrence of Saline Water Intrusion 513	
16.3	Ghyben–Herzberg Relation Between Fresh and Saline Waters	514
16.4	Shape of the Freshwater–Saltwater Interface 515	
16.5	Effect of Wells on Seawater Intrusion 517	
16.6	Effect of Tides on Seawater Intrusion 519	
16.7	Upconing of Saline Water 521	
16.8	Freshwater–Saltwater Relations on Oceanic Islands 524	
16.9	Identification of Seawater in Groundwater 525	
16.10	Control of Saline Water Intrusion 525	
16.11	Management of Coastal Aquifers 527	

16.12 Seawater Intrusion in India 530 Solved Examples 531 Problems 533

17. Groundwater-Modeling Techniques

- 17.1 Introduction 535
- 17.2 Physical Models 537
- 17.3 Analog Models 538
- 17.4 Model-based Analytical Formulas Coupled with Experience 545
- 17.5 Numerical Models 545
- 17.6 Finite Difference Method 551
- 17.7 Case Study 562 Solved Examples 565

Problems 576

18. Management of Groundwater Quantity 579

- 18.1 General 579
- 18.2 Groundwater Quantity 580
- 18.3 Conjunctive Use 581
- 18.4 Water Laws 584
- 18.5 Groundwater Management Techniques 585 Problems 590

19. Management of Groundwater Quality

- 19.1 General 591
- 19.2 Groundwater Contaminants 594
- 19.3 Soluble Salts in Groundwater 595

- 19.4 Sources of Groundwater Contamination 598
- 19.5 Groundwater Pollution Control 599
- 19.6 Treatment of Contaminated Aquifer 605
- 19.7 Restoration of Contaminated Aquifer 610
- 19.8 Monitoring of Groundwater Quality 617
- 19.9 Groundwater Risk and Disaster Management 620 Solved Examples 626 Problems 628

Bibliography

Appendices

- A Groundwater Resources Availability, Utilization and Stage of Development in India (CGWB 2011) 632
- B Categorization of groundwater assessment units (CGWB 2011) 634
- *C* Error Function, Normal distribution, complete elliptic integral, and modified Bessel's function 636
- D Theis well function W(u) = 640
- E Well function for an unconfined aquifer 641
- F Hantush (1956) Well Function W(u, r|B) for a leaky aquifer 647
- *G* Hantush (1956) well function $H(u, \beta)$ for a leaky aquifer 657
- *H* Papadopulos and Cooper (1967) well function $S(u_w, \rho)$ for large diameter wells 659
- I Flowing well function 660
- J Chow's (1952) Function F(u) 664
- K Values for slug test type curves by Papadopulos et al (1973) 665
- L Values of Hantush (1963) recharge mound function

$$F(\alpha,\beta) = \int_0^1 erf\left(\alpha/\sqrt{\tau}\right) \cdot erf\left(\beta/\sqrt{\tau}\right) d\tau \qquad 666$$

Index

669

630 631