
2.1 INTRODUCTION

This chapter introduces you to the UNIX Operating System and gives a brief introduction to UNIX
shells so that you can easily migrate to the practicing sessions discussed in next chapter. Computer
software can be roughly divided into two kinds: the system programs and the application programs. The
system programs manage the operation of the computer itself, while the application programs solve the
problems of the users. The most fundamental of all system programs is the operating system whose
purpose is to control a computer’s activities.

There are two main functions that an operating system performs: first, it presents the user with an
equivalent of a virtual machine that is easier to program than the underlying hardware. Secondly, the
operating system acts as a resource manager, by keeping track of who is using which resource, to grant
resource requests, to account for usage and to mediate conflicting requests from different programs and
users.

Operating systems have evolved through the years. Various operating systems differ in how they do
their job and what additional features they offer. The UNIX operating system is one such operating
system developed by Bell laboratories.

2.1.1 History of UNIX

UNIX is the happy outcome of the proverbial rags-to-riches story. What is now heralded as the most
powerful and popular multiuser operating system had a very humble beginning in the premises of AT &
T’s Bell laboratories. The origin of UNIX can be traced back to 1965, when a joint venture was under-
taken by Bell Telephone Laboratories, the General Electric Company and Massachusetts Institute of
Technology.

The aim was to develop an operating system that could serve a large community of users and allow
them to share data, if need be. This enterprise was called Multics, for Multiplexed Information and
Computing Service. Even after much time, resources and efforts had been devoted to the project, the
convenient, interactive computing service failed to materialise. This led Dennis Ritchie and Ken

Chapter

UNIX: Operating System and Shells

UNIX: Operating System and Shells 9

Thompson, both of AT & T, to start afresh on what their mind’s eye had so illustriously envisioned.
Thus, in 1969, the two along with a few others evolved what was to be the first version of the multiuser
system UNIX. Though this was not tapped to the fullest, it had all the trappings of a truly potent
multiuser operating system. This system was christened “UNIX” by Brian Kernighan, as a very re-
minder of the ill-fated Multics. The UNIX Operating System was re-written in a high level language, C,
designed and implemented by Ritchie.

2.1.2 Features of UNIX

The UNIX system has many useful features, the most important of which are its
· multitasking capability
· multiuser capability
· transportability
· large selection of powerful UNIX supplied programs
· communications and electronic mail
· library of applications software

Multitasking Capability

Multitasking means performing more than one task at a time. When you print a file and while it is
printing you start editing another document, you are performing multitasking operations. Multitasking
lets you simultaneously perform tasks formerly performed sequentially. This is managed by dividing the
CPU time intelligently between all processes or tasks.

Multiuser Capability

A multiuser system permits several users to use the same computer simultaneously. In a multiuser sys-
tem, the same computer resources-hard disk, memory, etc.-are accessible to many users. A terminal, in
turn, is a monitor and a keyboard, which are the input and output devices for the user.

A user at any terminal can not only use the resources of the computer but also the peripherals that may
be attached, for example: a printer. One can easily appreciate how economical such a setup is than
having as many computers as there are users, and also how much more convenient when the same data is
to be shared by all. The heart of a UNIX installation is the host machine, often known as a server or a
console.

Transportability

The UNIX system itself is very portable, the reason being that UNIX is written in C. That is, it is easier
to modify the UNIX System code for installation on a new computer than to rewrite another operating
system from the scratch for the new computer.

The ability to transport the UNIX system from one brand of computer to another has been the major
reason for the acceptance of this system. There are two types of portability to be considered: the
portability of the UNIX operating system itself and of the application programs. More than 90% of the
kernel is written in C and hence can be easily transported to another machine. Also, the application

10 Computer Programming�I: UNIX and C

programs written in higher level languages are also portable. Portable applications decrease program-
ming costs.

UNIX System—Supplied Tools

The UNIX system comes with several supplied programs. These programs are divided into two classes;
namely, integral utilities and tools, which are discussed below.

Integral utilities Integral utilities are part of the UNIX system that provide such assistance to the
operating system that they are absolutely necessary for the practical operation of a computer with UNIX.
One example is the UNIX system command interpreter or the shell program. Without this you could not
request your UNIX system to perform any work for you.

Tools Tools, on the other hand, are programs that are not necessary to the computer’s basic operation
but provide significant additional value to UNIX. These tools include many application programs. Inte-
gral utilities are utilities that let you set up sophisticated automatic procedures to perform a series of
tasks that would otherwise have to be performed as many separate actions. UNIX system tools include
an extensive “electronic filing cabinet”, word processing, typesetting capabilities, and many other
programs.

Communications and electronic mail

UNIX communications include the following options:
a. Communicating between different terminals hooked into the same computer.
b. Communicating between the users of one computer with users of another computer(the second

computer being of a different brand in the same location).
c. Communicating between computers of different sizes and types in different locations.

Third party application programs

In addition to application programs supplied by Bell, a library of over 500 UNIX application programs
have been developed and sold by various computer manufacturers and software companies. UNIX
application programs take advantage of the UNIX’s multiuser and multitasking capabilities and can be
used by more than one person at a time.

2.1.3 The Structure of the UNIX System

The UNIX system may be functionally viewed as consisting of the kernel, the shell and utilities, as
shown in Fig. 2.1. The role of each of these is given briefly in the next section.

The kernel

1. schedules programs,
2. manages data/file access and storage,
3. enforces security mechanisms, and
4. performs all hardware access.

UNIX: Operating System and Shells 11

The shell

1. presents each user by a prompt,
2. interprets the commands typed by a user,
3. executes user commands, and
4. supports a custom environment for each user.

Utilities

1. File management (rm, cat, ls, rmdir, mkdir)
2. User management (passwd, chmod, chgrp)
3. Process management (kill, ps)
4. Printing (lp, troff, pr)
5. Program development tools

Utilities

Shell

Kernel

Fig. 2.1 Schematic of basic UNIX system

2.1.4 UNIX Architecture

The UNIX system can be regarded as a kind of pyramid as shown in Fig. 2.2.
At the bottom is the hardware consisting of the CPU, memory, disks, terminals and other devices.

Running on the bare hardware is the UNIX operating system. Its function is to control the hardware and
provide a system call interface to all the programs. These system calls allow the users to create and
manage processes, files and other resources. Programs also make system calls by issuing instructions to
switch from the user mode to kernel mode to start up UNIX. So a library is provided with one procedure
(these procedures are written in assembly language, but can be called from C) per system call.

In addition to the operating system and system call library, there are a large number of standard
programs (which may differ from version to version) such as command processors (shell), editors, com-
pilers etc. Thus, there are three different interfaces to UNIX: true system call interface, the library
interface, and the interface formed by a set of standard utility programs.

12 Computer Programming�I: UNIX and C

User
Interface

Users

User mode

Kernel mode

Standard Utility programs
(shell, editors, compilers

etc)

Standard Library
(open, close, read, write, fork etc.)

Hardware
(CPU, memory, diskss, terminals etc.)

UNIX Operating System
(-process management, memory
management, file system, I/O etc)

Library
Interface

System call
Interface

NST Sai

Fig. 2.2 The layered architecture of a UNIX system

2.2 UNIX FILE SYSTEM

2.2.1 Introduction

All computer applications need to store and retrieve information. For many applications, the information
must be retained for weeks, months or forever. The solution to these problems is to store information on
disk or other media in units called files. Processes can then read them and write new ones if need be. A
file is a unit of data that is stored on a magnetic disk (or tape). A filename identifies the data uniquely.
A collection of files on the disk is called a file system. A directory is a special type of file that contains
a list of filenames.

Some operating systems use a flat or one-dimensional file system, where all files reside in a single
directory. The UNIX file system allows a hierarchical structure. The programs and data can be organ-
ized conveniently since files can be grouped according to usage. Files are managed by the operating
system. The operating system design deals with how these files are structured, named, accessed, used,
protected and implemented. That part of the operating system that deals with the files is known as the
file system.

The UNIX file system is a structure for organizing information. When a process wants to read or
write a file, it must first open the file. A file is opened with a OPEN call, whose first argument gives the
path name of the file to be opened and the second one specifies whether a file is to be read, written, or
both. The system checks to see if the file exists and, if it exists, it checks to see if the caller has the
permission to access it in the desired way as if that is also permitted. Than the system returns a small
positive integer called a file descriptor, to the caller. If the access is prohibited then it returns -1 to
indicate an error.

The calls for reading and writing the file use the file descriptor to identify the file. When a process
starts up, it has three descriptors available: 0 for standard input, 1 for standard output and 2 for standard

UNIX: Operating System and Shells 13

error. The first file opened is given the file descriptor 3 and next one 4 and so on. When a file is closed,
its file descriptor is freed and can be allocated on a subsequent open. There are two ways to specify file
names in UNIX. The first is using an absolute path starting from the root, and the second is a relative
path, which is specified relative to the working directory.

2.2.2 Files

Introduction

A file is a collection of information in the form of data, an application, or documents. When a file is
created, UNIX assigns the file a unique internal number called inode. The majority of the UNIX ver-
sions allow the file name to be of 14 characters in length, though some versions also allow longer file
names. All versions of UNIX recognize at least three types of files:

Ordinary files This type of file is used to store data. Users can add data to ordinary files using an
editor. Executable programs are also stored as ordinary files.

Directory files A directory file contains a list of files. Each entry in the file consists of two parts: the
name of the file and a pointer to the actual file on the disk. Directories behave just like ordinary files
except that some of the operations that you would use for manipulating ordinary files do not work for the
directories and vice versa.

The directory is a structure for organizing files. In the list of filenames that a directory contains, the
names may refer to ordinary files, special files or to other directory files. Since directories may be listed
inside or other directories, complex hierarchical structures of ordinary, special and directory files result.

Special files These files are used to reference physical devices such as terminal printers, disks etc.
They are read from and written to just like ordinary files but such requests cause activation of the
associated physical device.

Special files are divided into two categories: block and character. A block special file is one consist-
ing of a sequence of numbered blocks. The key property of the block special file is that each block can be
individually addressed and accessed. A program can open a block special file and directly read the block
124, for instance, without reading blocks 0 to 123. Block special files are used for disks. Character
special files are normally used for devices that input or output a character stream.

Some basic commands for file manipulation

· ls : List files in a Directory ls is used to display file names of the directory in an alphabetical order
where you type this command. This command has many options that allow us to see the detailed and
variety of information about the file.

· cat : Concatenate and Print a File cat is a short form for concatenate, which means to join together.
This utility is often used to display the contents of a single file, although you can use it to display
multiple files in succession. The command is of the form

$cat filename

and it displays the contents of the filename on the monitor, which is the standard output device.

· cp : Copy an Ordinary File cp command allows you to create a duplicate copy of an ordinary file.
The command line format for using the cp command is

14 Computer Programming�I: UNIX and C

$cp srcfile destfile

Here the srcfile is the original or the source file and destfile is the name of the copy to be created. The
important use of this command is to create a backup.

· rm : Remove an Ordinary File This command removes one or more ordinary files from the directory,
effectively erasing the file. The rm utility removes a file by deleting its pointer in the appropriate direc-
tory. In this way, the link between the filename and the physical file is destroyed, so the file can no
longer be accessed. The command format is

$rm filename…

where multiple filenames can be typed separated by spaces.

· mv : Move (Rename) a file mv command changes the name associated with a file by associating a
new filename with a pointer to the physical file in the directory and deleting the link to the old filename.
The command is as follows

$mv oldfile newfile

This changes the name of the file from oldfile to newfile

· ln : Creating Filename Aliases The UNIX file system allows more than one filename for the same
physical file, which means that it is possible to have aliases for any given file. The command line format
is as follows

$ln oldfile newfile

After the ln linking the oldfile and the newfile, both refer to the same file. So to remove a file with more
than one links you have to destroy all the links.

2.2.3 File Access Permissions

Introduction

The data in the UNIX system is contained in the form of files. One may want to restrict or permit access
to this data by restricting or permitting access to the files containing the data. The UNIX system allows
an easy means of controlling the file access that the system users may have to all three types of files
(ordinary, directory, special files).

Even for a sole user, this is a necessity so that you don’t accidentally damage the contents of your
files. So in a multiuser system, restricting access becomes all the more important, so that you can protect
your file from being read, written, or erased by other users in the system.

Types of File Access Permissions

UNIX provides three different types of class users and three different modes of file access. These three
classes of users and modes of access give rise to nine different kinds of access permissions allowed
within the UNIX file system.

UNIX: Operating System and Shells 15

There are three classes of system users:

Owner (denoted by u for users) Every file has an owner. The owner is the system user who created
the file. The superuser can change the individual ownership of a file if necessary. The owner has full
control over restricting or permitting access to the file at any time.

Group (denoted by g) It is possible to have one or more system users own the file collectively in a
kind of group ownership. The group is more than one user who may access the file. A system user who
is not the file owner may access the file if he is a group owner, but he cannot restrict or permit access to
those files unless he himself is the owner.

Other (denoted by o) The other category refers to any other user of the system. These are users who
are neither individuals nor group owners.

In addition to classes of file users, there are three ways of accessing a file. The meaning of these
access modes is somewhat different for ordinary files than it is for directories. These modes and their
meanings are summarized in Table 2.1.

Table 2.1 File Access Modes and Their Meanings

Access Mode Ordinary File Directory File
Read Allows examination of Allows listing of files

the file contents within the directory
Write Allows changing the Allows creating new files and

contents of the File removing old ones.
Execute Allows executing file Allows searching directory

as Command

· System users with read permission for files may read (examine) the contents of an ordinary
file(for example, by using cat), and with read permission for directory can read the contents of a
directory (by using the ls command).

· System users with write permission for files may write to a file and change its contents (for
example, by using an editor); those with write permission for directory can use certain privileged
programs to be written on a directory (allows creation and removal of files itself). Write
permission is also required to delete a file.

· And finally, the system users with execute permission may execute the file as a command.
Executing makes sense only if the file is an executable program or a shell script. The execute
permission for the directory file is called search permission, since directories may be searched
but not executed like a command. A user must have the execute permission for a directory in
order to access the files named in that directory. Thus, even if you had read and write permissions
for an ordinary file that was listed in a directory, unless you had an execute permission for the
directory containing the ordinary file, the UNIX system would not allow you to read or write the
contents of the ordinary file.

Determining File Access Permissions

The three classes of file users (owners, group and others) may be combined with the three types of
access(read, write and execute) to give nine possible sets of permissions as shown here:

Owner Group Other

r w x r w x r w x

16 Computer Programming�I: UNIX and C

The presence of permission is indicated by the appropriate letter being in its correct location. The
absence of a permission is indicated by a dash (-) in the same place.
For example:
r - - r - - r - - means this file can be read by all three user classes but cannot be written or executed by
anyone and
r w x - - - - - - means this file can be read, written and executed by the owner but is not accessible to
groups and others.

Changing File Access Permissions

The chmod command (meaning change mode) allows you to change permission modes of one or more
files or directories.

$chmod [who] op-code permission… file…

The who argument tells chmod the user class and may be any of the following:
· u User (owner)
· g Group file owner
· o Other users
· a All users (owner, group and others)

The op-code argument represents the operation to be performed by chmod:
· + Add the specified permission to the existing permission
· – Remove the indicated permission from the existing permissions
· = Assign the indicated permissions.

The permission argument uses the following abbreviations:
· r read
· w write
· x execute

Now, for example, a command of the type,

$chmod go-rw letter

means to remove the read and write permissions from the file letter for the group and the other users of
the file.

2.2.4 The File System Hierarchy

Introduction

The UNIX file system has quite a few significant features. It has a hierarchical structure providing
support for directories. These files are expandable, enabling of growing as required. Files are treated as
byte streams so that they can contain any characters. Security rights are associated with files and direc-
tories enabling read, write, execute privileges for owner, group and others. Files may be shared enabling
concurrent access. Hardware devices are treated just like files. Up until now, we have seen only a
directory containing entries of ordinary files. But, a directory can contain other directories. This ar-
rangement gives rise to the tree-like branching structure of the file system.

UNIX: Operating System and Shells 17

Figure 2.3 shows the structure diagrammatically.

bin etc lib

/(root)

username 1 username 2

f11...f1n f21...f2nd11....d1n d21....d2m

..............

usr div tmp

Fig. 2.3 A sample file system

The UNIX file system begins with a directory called root. The root directory is designated by a slash(/).
Branching from the root are several other directories (named bin, dev, usr, tmp, lib, etc.). These directo-
ries are considered as subdirectories of the root directory and conversely the root is considered to be the
parent of these directories. Each subdirectory can point to other subdirectories and to other ordinary
files, which is the upside down branching as shown in the Fig. 2.3.

The main reason for having different directories is to keep some files at once together and separated
from other files. For example, files that are used by the system might be kept in certain directories such
as bin, lib, etc., while files created by the system users may be kept in other directories; for example, in
tmp and the subdirectories of usr.

Figure 2.4 shows the representation of the entries for the directory file username 1.

usr
(parent dir)

File on disk

File on disk

subdirectory

subdirectory

Pointer field
Filename field

f11

f1n

d11

d1n

Fig. 2. 4 Detail of directory structure for username1

18 Computer Programming�I: UNIX and C

Working Directories and Pathnames

When you first sign on to your UNIX system you begin to work in a particular directory known as your
home directory. Your home directory is a unique fixed directory that is assigned when your system
administrator establishes your account.

The directory in which you are working at any point of time is known as your working directory or
current directory and it need not be fixed; it can be changed. Every file in UNIX has one unique absolute
pathname and it begins with the root directory.

Basic Commands for Working with Directories

The following are the basic commands with which you can work when you are dealing with directories
· pwd : Print Working Directory The pwd command displays the absolute pathname of your

working directory and the command line format is

$pwd

· mkdir : Create a Directory You may wish to store files in a particular directory of your own
creation. mkdir command allows you to create one or more directories. The mkdir has the
following command line format

$ mdir dirname…

The argument dirname may be either an absolute or relative path name and you may specify more than
one directory name on a single command line. If a dirname already exists, the mkdir command aborts
and does not overwrite the existing directory.

· cd : Change Directory To change to any directory in the file system use the cd command (for
change directory). The command format is simply

$ cd pathname

where pathname is either an absolute or relative path name to the desired target directory. Unless you
do use a full pathname, any filename you specify will be taken to mean a file relative to your current
working directory.

· rmdir : Remove a Directory If you decide you no longer need a directory, you can use the
command rmdir to remove it. To remove one or more directories use the command line format

$ rmdir pathname…

The rmdir cannot remove a directory unless it is empty. This prevents you from accidentally removing
files you wish to keep.

Input/Output in UNIX (Device files)

Like all computers, those running UNIX have I/O devices such as terminals, disks, printers and net-
works connected to them. Some way is needed to allow programs to access these devices. Although
many solutions are available, UNIX integrates them into the file system as special files.

When you log in to the UNIX system, you are assigned a particular terminal from which you control
all your processes. This terminal is called your Control Terminal. The UNIX system knows each device

UNIX: Operating System and Shells 19

by a unique file name; using this file name you can refer to your control terminal or another terminal
device.

Each I/O device is assigned a path name usually in /dev. For example, the printer may be /dev/lp,
terminal 1 may be /dev/tty1 and network may be /dev/net. When you need to refer to your terminal, you
may use the tty command to find out the file name for your control terminal. These special files can be
accessed the same way as any other files. No special commands or system calls are needed. The usual
READ and WRITE system calls will do just fine. For example, the command

cp file /dev/lp

copies the file to printer causing the file to be printed.(assuming this is permitted). An additional
advantage is that the usual file-protection rules apply automatically to I/O devices.
There are three major parts to every file in the UNIX file system. They are:

· the inode
· the data blocks
· the directory

The inode

Each file in the file system is described by a structure called an inode . To keep track of which blocks
belong to which file, one can associate with each file a little table called an inode (short form for index-
node), which lists the attributes and disk addresses of the file’s blocks.

inodes are located in special data blocks (not used for file data) and each 512 byte block can contain
as many as eight 64 byte inodes. The inode contains all data about the file except the file name and the
actual data contained in the file. The disk addresses for the file’s data blocks are contained in the inode
area. The inodes are numbered from 2 (reserved for the root directory,/) through 65,535. i-node 1 is
reserved for bad block handling. This identifying number is known as the inode number or the i-number.

The first few disk addresses are stored in the inode itself so that for small files, all the necessary
information is right in the i-node. Hence, whenever a small file is opened the information is directly
fetched from disk to the main memory. But for somewhat larger files, one of the addresses in the i-node
is the address of a disk block called a single indirect block. This block contains additional disk ad-
dresses. Similarly if this still is not enough, another address in the inode, called a double indirect
block, contains the address of a block that contains a list of single indirect blocks. Each of these single
indirect blocks points to a few hundred data blocks. Similarly, one can also have a triple indirect
block, and UNIX uses this scheme.

The data blocks

The data blocks are located on the disk and contain the actual data of a file. Each block can typically
hold 512 characters. Some UNIX implementation use larger block sizes ranging from 1024 characters
and up. Even if the file contains only one character, an entire data block must be allocated to hold this
single character.

The directory

A directory contains one or more filenames. Each entry in a directory contains one filename and the
inode number that points to the inode for the file. Directories also have an inode.

20 Computer Programming�I: UNIX and C

When a file is opened, UNIX uses the path name given by the user to locate the directory entry. The
directory entry provides the information needed to find the disk blocks. The directory system’s job is to
map the name of the file onto the information needed to locate the data.

Figure 2.5(a) shows a UNIX directory entry, 2.5(b) shows the relationship between the data blocks,
the inode and a directory that references the file and 2.5(c) shows an inode.

Fig. 2.5(a) A UNIX directory structure

Fig. 2.5(b) The data blocks, inode and the directory

Fig. 2.5(c) An inode

UNIX: Operating System and Shells 21

2.3 UNIX SHELLS

To use UNIX, you must first log in by typing your name and password which the login program reads
and checks. This identification is necessary to provide security as, UNIX keeps track of who owns each
file. A file may be used only by authorized users. The UNIX password file contains one line for each
user, containing the user’s login name, numerical user id, encrypted password, home directory and other
information. When a user logs in, the login program encrypts the password just read from the terminal
and compares it to the one in the password file. If they agree the login is permitted, if not it is disallowed.

After a successful login the login program starts up the command line interpreter specified by the
user’s password file entry and then exits. Most of the command line interpreters is the shell. The shell
initialises itself and types a prompt character, often a % or $ sign on the screen and waits for the use to
type a command line.

When the user types a command line, the shell extracts the first word from it, assumes it is the name
of the program to be run, searches for this program and, if it finds it, runs the program. The shell then
suspends itself until the program terminates, at which time, it tries to read the next command. The shell
is an ordinary user program. All it needs is the ability to read from and write to the terminal, and the
power to execute other programs.

Commands may take arguments which are passed to the called program as character strings. For
example, the command line

$ cp src dest

invokes the cp program with two arguments src and dest
This program interprets the first one to be the name of an existing file. It makes a copy of this file and

calls the copy dest.
A program like the shell does not have to open the terminal in order to read from it or write to it.

Instead, when it starts up it automatically has access to a file called standard input, a file called stand-
ard output and a file called standard error. Normally all three default to the terminal so that reads
from the standard input come from the keyboard and writes to the standard output or standard error
go to the screen.

2.4 SUMMARY

You have now been introduced to the basic features and issues in the UNIX operating system. You may
now feel comfortable to try your hands on the UNIX system as a user. Please contact your system
administrator and get yourself registered as an authorized user, with a specific login name and pass-
word. You will then be better able to appreciate the discussion in Chapter 3.

Review Questions

2.1 Give an account of how UNIX versions came chronologically into existence?
2.2 Explain the main features of UNIX.
2.3 Explain the important constituents of UNIX structure.
2.4 What is a file in UNIX? And what is a file link?
2.5 What are the security rights associated with files and directories?

