
H
Java Version History

 H.1 INTRODUCTION

Java is the most important advance in the programming technology invented during the last decade of the
20th century. Java technology is still evolving and is likely to be the primary programming language of the
next millennium.

Java technology has many facets that work together to get the job done. Java environment basically
consists of the following three entities:

 ∑ The language itself
 ∑ A class library (Application Program Interface (API) packages)
 ∑ A set of development tools.
Sun Microsystems, the inventors of Java, calls these three entities put together as Java Development

Kit (JDK). This means that the JDK contains everything we need for developing Java programs. The new
versions of Java are released as JDK versions by Sun Microsystems. That is, version JDK x.y means version
Java x.y and vice versa.

Since the release of the original version of Java (known as Java 1.0) in May 1995, Sun Microsystems
has been regularly releasing updates (changes and enhancements) of Java systems. Java 1.1 was released
in March 1997 and Java 1.2 in early 1998. Fortunately, most of the changes and enhancements are related
to the API packages and tools and very little changes have been introduced in the language itself. In early
1999, the Java 1.2 was renamed as Java 2 by Sun Microsystems and therefore, JDK 1.2, Java 1.2, and Java
2 all refer to the same thing.

The core API packages that contain numerous classes and interfaces have grown from around 200 in
version 1.0 to more than 1500 in version 2. Table H.1 summarizes the core API packages available in Java
2 and their functions. The table shows not only the packages added during the stages 1.1 and 2 but also the
number of classes and interfaces added to the various existing packages at these stages. These packages
together contain more than 1500 classes and interface and defi ne more than 13,000 methods. It is beyond
the scope of this book to provide a complete description of all these classed and methods. (For more details,
readers may refer to the JDK 1.2 documentation available in one of the Sun web sites or refer to the book

Programming with Java: A Primer376

Java Developers Almanac 1998, Patrick Chan, Addison Wesley). More statistics of Java packages are given
in Appendix I.

Table H.1 API Packages Available in Java 2

Stage

Sl First Total Classes
No. Package Added and Interfaces Task/Function

1.0 1.1 2
1. java.applet 1.0 4 4 4 Provides basic functionality needed to

implement applets.

2. java.awt 1.0 46 61 78 Provides the standard GUI controls
as well as drawing, printing and other
capabilities

3. java.awt.
accessability

2 – – 13 Supports the use of assistive
technologies for disabled users.

4. java.awt.color 2 – – 7 Supports the ability to work with
different color models.

5. java.awt. 1.1 – 6 6 Supports clipboard operations, for
transferring data between applications.

6. jawa.awt.dnd 2 – – 17 Supports drag–and–drop operations.

7. java.awt.dnd.peer 2 – – 3 Provides capability to access platform–
dependent drag–and–drop facilities.

8. java.awt.event 1.1 – 30 33 Provides foundation for processing
events fi red by AWT components.

9. java.awt.font 2 – – 15 Provides support for advanced font
capabilities.

10. java.awt.geom 2 – – 33 Supports standard geometrical objects
and transformations, in 2D.

11. java.awt.im 2 – – 3 Supports the Input Method API for
internationalization.

12. java.awt.image 1.0 12 14 52 A Java 2D API package that supports
image processing.

13. java.awt.image.codec 2 – – 6 Supports image compression.

14. java.awt.image.
renderable

2 – – 7 Supports functions for producing
rendering-independent images.

15. java.awt.peer 1.0 22 27 26 Provides support for interfacing with
the underlying window system.

16. java.awt.print 2 – – 12 A Java 2D API package that supports
printing of text and graphics.

(Contd)

Appendix H: Java Version History 377

Stage

Sl First Total Classes
No. Package Added and Interfaces Task/Function

1.0 1.1 2

17. java.awt.swing 2 – – 169 Provides foundation for the swing API,
for creating completely portable GUI.

18. java.awt.swing.
border

2 – – 10 Implements borders and border styles,
around a swing component.

19. java.awt.swing.event 2 – – 38 Implements Swing events and event
listeners.

20. java.awt.swing.plaf 2 – – 40 Supports the use of the pluggable look-
and-feel, capabilities.

21. java.awt.swing.plaf.
basic

2 – – 107 Provides default look-and-feel of
Swing components.

22. java.awt.swing.plaf.
metal

2 – – 42 Provides “metal” look-and-feel of
Swing components.

23. java.awt.swing.
preview

2 – – 21 Contains classes whose API have not
been fi nalized yet.

24. java.awt.swing.table 2 – – 13 Implements the Swing table
component for managing tables.

25. java.awt.swing.text 2 – – 87 Implements text processing functions
such as selection, editing, etc.

26. java.awt.swing.text.
html

2 – – 39 Provides basic HTML editing capabili-
ties.

27. java.awt.swing.text.
rtf

2 – – 1 Provides the capability to edit Rich
Text Format documents

28. java.awt.swing.tree 2 – – 11 Provides capability to construct and
manage tree-type data structure.

29. java.awt.swing.undo 2 – – 9 Provides undo and redo capabilities in
applications.

30. java.beans 1.1 – 23 25 Provides the basic Java beans func-
tionality.

31. java.beans.
beancontext

2 – – 19 Supports the implementation of
execution environment for beans.

32 java.io 1.0 31 69 77 Performs a wide variety of input and
output functions.

Table H.1 (Contd)

(Contd)

Programming with Java: A Primer378

Stage

Sl First Total Classes
No. Package Added and Interfaces Task/Function

1.0 1.1 2
33. java.lang 1.0 64 69 76 Provides support for implementing

fundamental Java objects.

34. java.lang.ref 2 – – 6 Supports Reference Objects that are
used to refer to other objects.

35. java.lang.refl ect 1.1 – 7 9 Provides capability to obtain refl ective
information about classes, and objects.

36. java.math 1.1 – 2 2 Provides capability to perform
arbitrary-precision arithmetic.

37. java.net 1.0 19 26 32 Supports features for network
programming.

38. java.rmi 1.1 – 19 20 Provides capability to access objects
on remote computers.

39. java.rmi.activation 2 – – 16 Supports persistent object reference
and remote object activation.

40. java.rmi.dgc 1.1 – 3 3 Supports functions for distributed
garbage collection.

41. java.rmi.registry 1.1 – 3 3 Supports distributed registry operations.

42. java.rmi.server 1.1 – 23 24 Provides capabilities for supporting the
server side of RMI.

43. java.security 1.1 – 26 57 Provides basic foundation for the
Security API.

44. java.security.acl 1.1 – 8 8 Provides capability for implementing
security access controls.

45. java.security.cert 2 – – 12 Provides support for parsing and
managing digital certifi cations.

46. java.security.
interfaces

1.1 – 5 5 Supports implementation of the NIST
digital signature of algorithm.

47. java.security.spec 2 – – 10 Provides specifi cation for crypto-
graphic keys

48. java.sql 1.1 – 17 24 Provides support for the Java database
connectivity.

49. java.text 1.1 – 19 28 Provides support for internatio-
nalization of text and messages.

Table H.1 (Contd)

(Contd)

Appendix H: Java Version History 379

Stage

Sl First Total Classes
No. Package Added and Interfaces Task/Function

1.0 1.1 2
50. java.util 1.0 14 26 49 Supports a variety of common progra-

mming needs.

51. java.util.jar 2 – – 8 Provides support for working with
JAR (Java Archive) fi les.

52. java.util.mime 2 – – 3 Provides capability to work with
MIME type objects.

53. java.util.zip 1.1 – 17 17 Provides support for working with
compressed fi les.

54. org.omg.CORBA 2 – – 104 Implements the foundation for
supporting Java-CORBA integration.

55. org.omg.CORBA.
ContainedPackage

2 – – 1 Describes a CORBA object in a CORBA
container.

56. org.omg.CORBA.
ContainerPackage

2 – – 1 Describes a CORBA container object.

57. org.omg.CORBA.
InterfaceDefPackage

2 – – 1 Describes a CORBA interface defi nition.

58. org.omg.CORBA.
ORBPackage

2 – – 1 Raises an exception when an invalid
name is passed to an object request
broker.

59. org.omg.CORBA. 2 – – 2 Signals exceptions related to type
usage and constraints.

60. org.omg.CORBA.
portable

2 – – 5 Supports vender-specifi c CORBA
implementation.

61. org.omg.CosNaming 2 – – 22 Implements a tree-structured data type
naming.

62. org.omg.CosNaming.
NamingContextPackage

2 – – 18 Implements nodes within the tree-
structured naming scheme.

 H.2 CHANGES IN JAVA 1.1

As pointed out earlier, the updates include fi ve kinds of changes:
 1. Additions to the existing packages
 2. Addition to new packages
 3. Changes in the existing classes and members
 4. Changes in the language itself
 5. Changes in tools

Table H.1 (Contd)

Programming with Java: A Primer380

Addition to the Existing Packages
Additions to the existing packages may include two things:
 1. New classes in the existing packages
 2. New members (fi elds, constructors, and methods) in the existing classes

As seen from Table H.1, new classes have been added to all the classes except Applet class. Similarly,
a comparison of Tables J.2 and J.3 shows that new members have been added to many classes in almost
all the existing packages. All these additions are aimed at enhancing the functionality of the existing API.
Some important enhancements are listed as follows:

Abstract Windowing Toolkit (AWT) Enhancements
The additions have improved the functiona-lity of AWT to make the large-scale GUI development more
feasible. Java 1.1 supports delegation-based event handling, data transfer such as cut-copy-paste, desktop
color schemes, printing, mouseless operation, faster scrolling, popup menus and much more. These
improvements have made Java 1.1 faster than Java 1.0.

I/O Enhancements
Java 1.1 has added character streams to the existing java.io package. These are like byte streams of Java 1.0
except that they operate on 16-bit Unicode characters rather than eight-bit bytes. Character streams make
it easy to write programs that are independent of the user’s culture and language and therefore easier to
write “global programs”. The process of writing a global program and ensuring that it can be used without
change by anyone in the world is known as internationalization. In addition, two byte streams were added
to support object serialization. Serialization lets us store objects and handle them with binary input/output
streams.

Networking Enhancements
The 1.1 release made several enhancements to the networking package, java.net. It supports selected BSD-
style options in the base classes and provides facility for fi ner granularity in reporting and handling network
errors.

Native Methods Interface
Native methods are written in languages other than Java. The native methods interface from 1.0 has been
completely rewritten and formalized. This interface is now known as the Java Native Interface (JNI). This
provides capability for Java objects to access native methods.

Addition of New Packages
Java 1.1 has added the following new packages to provide new capabilities.
 1. java.awt.datatransfer 9. java.rmi.server
 2. java.awt.event 10. java.security
 3. java.beans 11. java.security.acl
 4. java.lang.refl ect 12. java.security.interfaces
 5. java.math 13. java.sql
 6. java.rmi 14. java.text
 7. java.rmi.dgc 15. java.util.zip
 8. java.rmi.registry

Some major new capabilities are discussed as follows:

Appendix H: Java Version History 381

Security and Signed Applets
Java 1.1 supports the developments of digitally signed Java applications. It provides capability for key
management, certifi cate management and security access controls.

Java Archive Files
Java Archive (JAR) fi les introduced in version 1.1 provide the capability for storing a number of fi les
together by zipping them to shrink them, so the user can download many fi les at once. JAR fi les help
us organize applets, applications, beans, and class libraries and support more effi cient use of network
resources.

JavaBeans Architecture
The new JavaBeans architecture provides specifi cations that describe Java objects suitable for reuse. The
JavaBeans API allows third-party software vendors to create and ship reusable components (known as
Beans), such as text, spreadsheets, graphic widgets, etc., that can be used by non-programmers to build
applications.

Math Package
The new package java.math added to Java 1.1 contains two classes, BigInteger and BigDecimal. They
provide support for performing arithmetic and bit manipulation on arbitrary precision decimal and integer
numbers, without causing overfl ow or loss of precision.

Remote Method Invocation (RMI)
RMI API, introduced in 1.1, provides capability to create distributed Java-to-Java applications. Java
objects in a local computer can invoke the methods of objects on a remote computer. The concept of object
serialization is used to pass objects as parameters and return values in the remote method invocations.

Refl ection
Refl ection means identifi cation of fi elds, constructors and methods of loaded classes and objects and using
this information at runtime. These capabilities are used by Java Beans, object inspection tools, debuggers,
and other Java applications and applets.

Java Database Connectivity (JDBC)
JDBC capability is provided by the package java.sql. This provides a uniform access to a wide range of
relational databases from Java.

Changes in the Existing Classes and Methods
Many classes and methods have undergone changes from 1.0 to 1.1. Changes may be:
 1. New members in the existing classes
 2. Deprecation of classes
 3. Deprecation of methods
 4. Removal of classes
 5. Removal of methods
 6. Modifi cation of design of classes
 7. Modifi cation of defi nition of methods

A complete description of all these changes is beyond the scope of this appendix. A brief description of
classes and methods that have been deprecated or removed is given in Appendix I.

Programming with Java: A Primer382

Changes in Language Itself
Changes in language itself were very minor. Bytes and shorts are accommodated as wrapped numbers by
adding new classes Byte and Short. The abstract class Number gets two new concrete methods byteValue
and shortValue.

A new class Void has been added as an uninstantiable place holder.

Inner Classes
One important change to the Java 1.1 is the ability to defi ne classes as members of other classes. Such
classes are called nested classes. Inner classes are one type of nested classes.

Instance Initializers
Java 1.0 supported initialization of only static variables (also known as class variables). Example:
 class TestClass
 {
 static {

 ------- // Initialization code

 }
 }

Java 1.1 permits initialization of instance variables as well. Example:
 class TestClass
 {
 {

 ------- // Initialization code

 }
 }

Array Initialization
Java 1.1 permits initialization of an array content in a new statement. For example, the following code
creates an array of strings:
 String [] city = new String [] {
 “Madras”
 “Delhi”
 “Bombay” } ;

New Uses for Final
Java 1.1 allows us to declare the method parameters and local variables as fi nal. However, a subclass can
override a method and add or drop any fi nal parameter modifi ers. We can also deter initialization of a fi nal
variable, as long as we initialize it before it is used and assign a value to it exactly once.

 H.3 CHANGES IN JAVA 2

Java 2 is a major upgrade of the core API and adds a standard extension architecture. Again the changes
may be classifi ed as follows:

Appendix H: Java Version History 383

 1. Additions to the existing packages (Enhancements)
 2. Adding new packages (New capabilities)
 3. Changes in the existing class and methods
 4. Changes in the language
 5. Changes in tools

Enhancements in Java 2
Capabilities of java has been considerably enhanced by adding new classes to the existing packages as well
as new members to almost all the existing classes. A comparison of Tables 1.3 and 1.4 (see Appendix I) will
reveal this.

Security Enhancement
Java 2 provides users with the capability to specify security policies simply by editing the security
permissions stored in their policy text fi les. Unless a permission is explicitly specifi ed to code, it cannot
access the resource that is guarded by that permission.

Java Beans Enhancement
Java 2 provides facilities to create more sophisticated JavaBeans components and applications. It provides
capability to incorporate with other Beans and to learn information about their execution environment.

RMI Enhancement
Java 2 has signifi cantly enhanced the RMI API. It supports remotely activated objects and object references
that persist across multiple object activation.

JNI Enhancement
Java 2 extends Java native Interface (JNI) to incorporate new features to provide capabilities for controlling
the manner in which native methods interact with the Java Virtual Machine.

JDBC Enhancement
Java 2 includes an improved version of JDBC–ODBC bridge driver and supports JDBC 2.0.

Audio Enhancement
Java 2 contains a new, high-quality sound engine that provides support for audio in applications as well
as applets. The sound engine also provides support for the Musical Interface Digital Interface (MIDI) in
addition to other traditional sounds.

JAR Enhancement
Java 2 JAR enhancements include improved tools for creating and updating JAR fi les and performing JAR
I/O operations.

Refl ection Enhancement
Refl ection support was introduced in 1.1. Java 2 adds additional capability to identify a fi eld, method, or
constructor as suppressing Java language access controls. This facilitates the better use of refl ection with
the improved Java 2 security model.

Programming with Java: A Primer384

New Capabilities in Java 2
In addition to improving the existing capabilities of the API, Java 2 has also added a number of new
capabilities to it. Perhaps, the single most new feature is the addition of Java Foundation Classes (JFC)
to Java 2. The JFC includes the functionalities such as Swing, Java 2D, Drag-and-Drop and Accessibility.
Besides integrating JFC, Java 2 provides a number of other new capabilities. The new packages added
include the following:

 1. java.awt.accessibility 21. java.awt.swing.text.rtf
 2. java.awt.color 22. java.awt.swing.tree
 3. java.awt.dnd 23. java.awt.swing.undo
 4. java.awt.dnd.peer 24. java.beans.beancontext
 5. java.awt.font 25. java.lang.ref
 6. java.awt.geom 26. java.rmi.activation
 7. java.awt.im 27. java.security.cert
 8. java.awt.image.codec 28. java.security.spec
 9. java.awt.image.renderable 29. java.util.jar
 10. java.awt.print 30. java.util.mime
 11. java.awt.swing 31. org.omg.CORBA
 12. java.awt.swing.border 32. org.omg.CORBA.ContainedPackage
 13. java.awt.swing.event 33. org.omg.CORBA.ContainerPackage
 14. java.awt.swing.plaf 34. org.omg.CORBA.InterfaceDefPackage
 15. java.awt.swing.plaf.basic 35. org.omg.CORBA.ORBPackage
 16. java.awt.swing.plaf.metal 36. org.omg.CORBA.TypeCodePackage
 17. java.awt.swing.preview 37. org.omg.CORBA.portable
 18. java.awt.swing.table 38. org.omg.CosNaming
 19. java.awt.swing.text 39. org.omg.CosNaming.NamingContextPackage
 20. java.awt.swing.text.html

Swing
Swing is the code word used by the JavaSoft team for the improved AWT. Swing implements a new set of
GUI components with a “pluggable” look and feel. Swing is implemented completely in Java. Pluggable
look and feel architecture allows us to design a single set of GUI components that can automatically have
the look and feel of any OS platform.

Java 2D
The new Java 2D API includes a set of tools for dealing with two-dimensional drawings and images. These
include provision for colorspaces, text, line art and printing.

Accessibility
Accessibility API provides support for the use of assistive technologies, such as screen magnifi ers, speech
recognition systems, and Braile terminals intended for use by disabled users.

Drag and Drop
Drag and Drop capability of Java 2 facilitates data transfer across Java and native applications, between
Java applications, and within a single application.

Appendix H: Java Version History 385

Java IDL
Java IDL in Java 2 provides a set of tools for interfacing Java objects with CORBA (Common Object
Request Broker Architecture) objects and for developing CORBA objects in Java. It also includes a Java
ORB (Object Request Broker) and an ORB name server.

Collections
The Collections API provides an implementation-independent framework for working with collection of
objects such as sets, maps, lists, and linked lists.

Package Version Identifi cation
A new capability of Java 2 allows applets and applications to obtain version information about a particular
Java package at runtime.

Reference Objects
Reference objects (introduced in version 2) stores references to other objects. This feature can be used to
implement object-catching mechanisms.

Input Method API
The new Input Method API provides support for Java’s internationalisation. This enables all text-editing
components to receive foreign language text input through input methods. It currently supports Japanese,
Chinese and Korean languages.

Language Changes
There are not major changes in language. Only three methods of Thread class, stop(), suspend(), and
resume() have been depreciated because of errors and inconsistencies caused by them. Instead of using the
stop() method, it is proposed that a thread may monitor the state of a shared variable and stop execution
by returning from its run() method. Similarly, a thread may suspend and resume its execution based on the
value of shares variables (by monitoring interface events).

Tools Changes
Java 2 has improved the tools available in the earlier versions and also added new tools. The javakey tool of 1.1
has been replaced by the new keytool and javasinger tools. The Java 2 now includes the following tools:
 ∑ keytool for maintaining a database of key pairs and digital certifi cates.
 ∑ javasinger for signing JAR fi les and verifying the signatures of signed fi les.
 ∑ policytool for creating and modifying the fi les that defi ne security policy.
 ∑ tnameserv for implementing CORBA Common Object Services (COS) Naming Service.
 ∑ rmid for remote activation system daemon.

 H.4 PERFORMANCE ENHANCEMENTS

The enhancements and new features added to Java 2 has considerably improved the performance of Java which
has been a subject of criticism. Given below are some of the performance improvements achieved in Java 2.
 ∑ Improvements in multithreading performance
 ∑ Reduction in memory usage for string constants
 ∑ Faster memory allocation and garbage collection
 ∑ Improvements in the performance of the thread monitor methods

Programming with Java: A Primer386

 ∑ Support of native libraries for some critical API classes
 ∑ Inclusion of just-in-time (JIT) compilers with Java 2

 H.5 WHAT’S NEW IN JAVA 6

Java SE 6 is the latest version of Java that was released on December 11, 2006. It was codenamed as
Mustang. Java 6 is more effi cient and robust in comparison to the previous versions of Java. Higher
effi ciency is induced into this version through several key additions and updates. These additions have
provided greater fl exibility and newer options for the Java developers. Some of the key features of Java
SE 6 are:
 ∑ It supports blending of scripting languages with java code.
 ∑ It provides extensive support for all JDBC databases, thus eliminating the need for confi guring

databases. As a result, the development of applications, which require fetching data from the
database, has become simpler.

 ∑ Java SE 6 comes bundled with several new options for developing GUI-based applications. The
major add-on is SwingWorker, which facilitates threading in the GUI applications.

 ∑ It offers specialized tools for monitoring and managing memory-heaps and other system related
information.

 ∑ It offers several new features on the security front such as cryptographic services, Public Key
Infrastructure (PKI) and XML-Digital signature.

Table H.2 lists some of the key additions in Java SE 6:

Table H.2 Additions in Java SE 6

Deque
BlockingDeque
NavigableSet

Interfaces NavigableMap
ConcurrentNavigableMap
isObjectMonitorUsageSupported
isSynchronizerUsageSupported
fi ndDeadlockedThreads
ArrayDeque
ConcurrentSkipListSet
ConcurrentSkipListMap

Classes LinkedBlockingDeque
AbstractMap.SimpleEntry
AbstractMap.SimpleImmutableEntry
Console
getTotalSpace
getFreeSpace

Methods getUsableSpace
setWritable
setReadable
setExecutable

