
Appendix A

In this appendix, our aim is to present definitions and elementary operations of vectors and matrices 
necessary for power system analysis.

 A.1  Vectors
A vector x is defined as an ordered set of numbers (real or complex), i.e.

 x 

1

2

n

x
x

x

È ˘
Í ˙
Í ˙D
Í ˙=
Í ˙
Î ˚



 (A.1)

x1, ..., xn are known as the components of the vector x. Thus, the vector x is a n-dimensional column vec-
tor. Sometimes transposed form of (A.1) is found to be more convenient and is written as the row vector.

 xT D
=  [x1, x2, ..., xn] (A.2)

Some Special Vectors

The null vector 0 is one whose each component is zero, i.e.

 0 

0
0

0

È ˘
Í ˙
Í ˙D
Í ˙=
Í ˙
Î ˚



The sum vector 1 has each of its components equal to unity, i.e.

 1 

1
1

1

È ˘
Í ˙
Í ˙D
Í ˙=
Í ˙
Î ˚
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The unit vector ek is defined as the vector whose kth component is unity and the rest of the components 
are zero, i.e.

 ek 

0

0
1
0

0

È ˘
Í ˙
Í ˙
Í ˙
Í ˙D Í ˙= Í ˙
Í ˙
Í ˙
Í ˙Î ˚





 kth component

Some Fundamental Vector Operations

The two vectors x and y are known as equal if, and only if xk = yk for k = 1, 2, ..., n. Then we say
 x = y

The product of a vector by a scalar is carried out by multiplying each component of the vector by 
that scalar, i.e.

 ax = xa D
=  a 

1

2

n

x
x

x

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚



If a vector y is to be added to or subtracted from another vector x of the same dimension, then each 
component of the resulting vector will consist of addition or subtraction of the correspond ing compo-
nents of the vectors x and y, i.e.

 x ± y 

1 1

2 2

n n

x y
x y

x y

±È ˘
Í ˙±Í ˙D
Í ˙=
Í ˙±Î ˚



The following properties are applicable to the vector algebra:
 x + y = y + x
 x + (y + z) = (x + y) + z
 a1(a2 x) = (a1 a2)x
 (a1 + a2)x = a1x + a2x
 a(x + y + z) = ax + ay + az
 0x = 0

PSE_App_A.indd   1091 12/11/2018   1:21:59 PM



Power System Engineering1092

 * Sometimes inner product is also represented by the following alternative forms x ¥ y, (x, y), <x, y>.

The multiplication of two vectors x and y of same dimensions results in a very important product 
known as inner or scalar product*, i.e.

 xTy 
1

n

i =
D
= Â xi yi D

=
 y Tx (A.3)

Also, it is interesting to note that
 xTx = | x |2 (A.4)

 cos f 
T

D
=

x y
x y

 (A.5)

where f is angle between vectors, | x | and | y | are the geometric lengths of vectors x and y, respectively. 
Two non-zero vectors are said to be orthogonal, if
 xT y = 0 (A.6)

 A.2  Matrices
Definitions
Matrix
An m ¥ n (or m, n) matrix is an ordered rectangular array of elements which may be real numbers, 
complex numbers, functions or operators. 

  A 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

a a a

È ˘
Í ˙
Í ˙D
Í ˙=
Í ˙
Î ˚





  



 = [aij] (A.7)

The matrix is a rectangular array of mn elements.
aij denotes the (i, j)th element, i.e. the element located in the ith row and the jth column. The matrix 

A has m rows and n columns and is said to be of order m ¥ n.
When m = n, i.e. the number of rows is equal to that of columns, the matrix is said to be a square 

matrix of order n.
An m ¥ 1 matrix, i.e. a matrix having only one column is called a column vector. An 1 ¥ n matrix, 

i.e. a matrix having only one row is called a row vector.

Diagonal matrix
A diagonal matrix is a square matrix whose elements off the main diagonal are all zeros (aij = 0 for i π j).

Example

 D 
4 0 0
0 2 0
0 0 9

È ˘
Í ˙D Í ˙=
Í ˙Î ˚
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Null matrix
If all the elements of the square matrix are zero, the matrix is a null or zero matrix.

Example

  0 
0 0

0 0

È ˘
Í ˙D Í ˙=
Í ˙Î ˚



  



 (A.8)

Unit (Identity) matrix
A unit matrix I is a diagonal matrix with all diagonal elements equal to unity. If a unit matrix is multi-
plied by a constant (l), the resulting matrix is a diagonal matrix with all diagonal elements equal to l. 
This matrix is known as a scalar matrix.

Example

 I = 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

; 4 
1 0 0
0 1 0
0 0 1

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 = 
4 0 0
0 4 0
0 0 4

È ˘
Í ˙
Í ˙
Í ˙Î ˚

  = 4 ¥ 4 unit matrix = 3 ¥ 3 scalar matrix

Determinant of a matrix
For each square matrix, there exists a determinant which is formed by taking the determinant of the 
elements of the matrix.

For example, if

 A = 
2 1 1
1 3 2
1 2 4

-È ˘
Í ˙-Í ˙
Í ˙Î ˚

 (A.9)

then

 det (A) = | A | = 2 
3 2
2 4

 – (– 1) 
1 2 1 3
1 4 1 2

- -
+

  = 2(8) + (– 6) + (–5) = 5 (A.10)

Transpose of a matrix
The transpose of matrix A denoted by AT is the matrix formed by interchanging the rows and columns 
of A.

Note that
 (AT)T = A
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Symmetric matrix
A square matrix is symmetric, if it is equal to its transpose, i.e.
 AT = A
Notice that the matrix A of Eq. (A.9) is a symmetric matrix.
Minor
The minor Mij of an n ¥ n matrix is the determinant of (n – 1) ¥ (n – 1) matrix formed by deleting the 
ith row and the jth column of the n ¥ n matrix.
Cofactor
The cofactor Aij of element aij of the matrix A is defined as
 Aij = (– 1)i + jMij

Adjoint matrix
The adjoint matrix of a square matrix A is found by replacing each element aij of matrix A by its cofac-
tor Aij and then trans posing.

For example, if A is given by Eq. (A.9), then

 adj A = 

3 2 1 2 1 3
2 4 1 4 1 2

1 1 2 1 2 1
2 4 1 4 1 2

1 1 2 1 2 1
3 2 1 2 1 3

T

–

È ˘- -
-Í ˙

Í ˙
Í ˙- -Í ˙-
Í ˙
Í ˙

- -Í ˙-Í ˙- -Î ˚

  = 
8 6 5
6 7 5
5 5 5

T-È ˘
Í ˙-Í ˙
Í ˙- -Î ˚

 = 
8 6 5
6 7 5
5 5 5

-È ˘
Í ˙-Í ˙
Í ˙- -Î ˚

 (A.11)

Singular and non-singular matrices
A square matrix is called singular, if its associated determinant is zero, and non-singular, if its associ-
ated determinant is non-zero.

 A.3  Elementary Matrix Operations
Equality of matrices
Two matrices A(m ¥ n) and B (m ¥ n) are said to be equal, if and only if
 aij = bij for i = 1, 2, ..., m, j = 1, 2, ..., n
Then we write
 A = B
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Multiplication of a matrix by a scalar
A matrix is multiplied by a scalar a if all the mn elements are multiplied by a, i.e.

 a A = Aa = 
11 l

1

n

m mn

a a

a a

a a

a a

È ˘
Í ˙
Í ˙
Í ˙Î ˚



  



 (A.12)

Addition (or subtraction) of matrices
To add (or subtract) two matrices of the same order (same number of rows, and same number of col-
umns), simply add (or subtract) the corresponding elements of the two matrices, i.e. when two matrices 
A and B of the same order are added, a new matrix C results such that
 C = A + B;
whose ijth element equals
 cij = aij + bij

Example 
Let

 A = 
3 0
2 1

È ˘
Í ˙-Î ˚

; B = 
2 1
0 3

-È ˘
Í ˙
Î ˚

then

 C = A + B = 
5 1
2 2

-È ˘
Í ˙
Î ˚

Addition and subtraction are defined only for matrices of the same order.
The following laws hold for addition:

 1. The commutative law: A + B = B + A
 2. The associative law: A + (B + C ) = (A + B) + C
Further
 (A ± B)T = AT ± BT

Matrix Multiplication

The product of two matrices A ¥ B is defined if A has the same number of columns as the number of 
rows in B. The matrices are then said to be conformable. If a matrix A is of order m ¥ n and B is an 
n ¥ q matrix, the product C = AB will be an m ¥ q matrix. The element cij of the product is given by

 cij = 
1

n

k=
Â aik bkj (A.13)
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Thus, the elements cij are obtained by multiplying the elements of the ith row of A with the correspond-
ing elements of the jth column of B and then summing these elements products.

For example

 11 12 11 12

21 22 21 22

a a b b
a a b b

È ˘ È ˘
Í ˙ Í ˙
Î ˚ Î ˚

 = 11 12

21 22

c c
c c

È ˘
Í ˙
Î ˚

where
 c11 = a11 b11 + a12 b21

 c12 = a11 b12 + a12 b22

 c21 = a21 b11 + a22 b21

 c22 = a21 b12 + a22 b22

If the product AB is defined, the product BA may or may not be defined. Even if BA is defined, the 
resulting products of AB and BA are not, in general, equal. Thus, it is important to note that in general 
matrix multiplication is not commutative, i.e.
 AB π BA

The associative and distributive laws hold for matrix multiplication (when the appropriate operations 
are defined), i.e.

Associative law: (AB)C = A(BC) = ABC
Distributive law: A(B + C) = AB + AC

 Example A.1 Given the two matrices

 A = 
1 0
2 3
0 1

È ˘
Í ˙
Í ˙
Í ˙Î ˚

; B = 
1 1 3
0 2 1

-È ˘
Í ˙
Î ˚

Find AB and BA

 Solution 
A and B are conformable (A has two columns and B has two rows); thus, we have

 AB = 
1 1 3
2 4 9
0 2 1

-È ˘
Í ˙
Í ˙
Í ˙Î ˚

; BA = 
1 0
4 7

-È ˘
Í ˙
Î ˚

A matrix remains unaffected, if a null matrix, defined by Eq. (A.8) is added to it, i.e.
 A + 0 = A

If a null matrix is multiplied to another matrix A, the result is a null matrix
 A0 = 0A = 0
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Also
 A – A = 0

Note that equation AB = 0 does not mean that either A or B neces sarily has to be a null matrix, e.g.

 
1 3 3 0
0 0 1 0

È ˘ È ˘
Í ˙ Í ˙-Î ˚ Î ˚

 = 
0 0
0 0

È ˘
Í ˙
Î ˚

Multiplication of any matrix by a unit matrix results in the original matrix, i.e.
 AI = IA = A

The transpose of the product of two matrices is the product of their transposes in reverse order, i.e.
 (AB)T = B T AT

The concept of matrix multiplication assists in the solution of simultaneous linear algebraic equa-
tions. Consider such a set of equations
 a11 x1 + a12 x2 + ... + a1n xn = c1

 a21 x1 + a22 x2 + ... + a2n xn = c2

 


 (A.14)
 am1 x1 + am2 x2 + ... + amn xn = cm
or

 
1

n

i=
Âaijxj = ci; i = 1, 2, . . . , m

Using the rules of matrix multiplication defined above, Eqs (A.14) can be written in the compact 
notation as
 Ax = c (A.15)
where

 A = 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

a a a

ºÈ ˘
Í ˙ºÍ ˙
Í ˙
Í ˙ºÎ ˚

  

 x = 

1 1

2 2;

n m

x c
x c

x c

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙=
Í ˙ Í ˙
Í ˙ Í ˙
Î ˚ Î ˚

 

c

It is clear that the vector-matrix Eq. (A.15) is a useful short hand representation of the set of linear 
algebraic equations (A.14).
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Matrix Inversion

Division does not exist as such in matrix algebra. However, if A is a square non-singular matrix, its 
inverse (A–1) is defined by the relation
 A–1A = AA–1 = I (A.16)

The conventional method for obtaining an inverse is to use the following relation

 A–1 = 
adj
det

A
A  (A.17)

It is easy to prove that the inverse is unique
The following are the important properties characterising the inverse:

 (AB)–1 = B–1A–1

 (A–1)T = (AT)–1 (A.18)
 (A–1)–1 = A

Example If A is given by Eq. (A.9), then from Eqs (A.10), (A.11), (A.17), we get

 A–1 = 
adj
det

A
A

8 6 5 8/5 6/5 1
1 6 7 5 6/5 7/5 1
5

5 5 5 1 1 1

- -È ˘ È ˘
Í ˙ Í ˙= - = -Í ˙ Í ˙
Í ˙ Í ˙- - - -Î ˚ Î ˚

 A.4  Scalar and Vector Functions
A scalar function of n scalar variables is defined as
 y D=  f(x1, x2, . . ., xn) (A.19)

It can be written as a scalar function of a vector variable x, i.e.
 y = f (x) (A.20)
where x is an n-dimension vector,

 x = 

1

2

n

x
x

x

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚



In general, a scalar function could be a function of several vector variables, e.g.
 y = f (x, u, p) (A.21)
where x, u and p are vectors of various dimensions.

A vector function is defined as

 y = f (x) 

1

2

( )
( )

( )m

f
f

f

D

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Î ˚



x
x

x

 (A.22)
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In general, a vector function is a function of several vector variables, e.g. 
 y = f (x, u, p) (A.23)

 A.5  Derivatives of Scalar and Vector Functions
A derivative of a scalar function (Eq. A.20) with respect to a vector variable x is defined as

  

1

2

n

f
x
f

x

f
x

∂
∂
∂

∂ ∂
∂

∂
∂

D

È ˘
Í ˙
Í ˙
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚



f
x

 (A.24)

It may be noted that the derivative of a scalar function with respect to a vector of dimension n is a vec-
tor of the same dimen sion.

The derivative of a vector function (Eq. A.22) with respect to a vector variable x is defined as

  

1 1 1

1 2

2 2 2

1 2

1 2

n

n

m m m

n

f f f
x x x
f f f
x x x

f f f
x x x

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
∂

∂ ∂ ∂
∂ ∂ ∂

D

È ˘ºÍ ˙
Í ˙
Í ˙

ºÍ ˙= Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

   



f
x

 (A.25)

  = 

1

2

T

T

T
m

f

f

f

∂
∂

∂
∂

∂
∂

È ˘È ˘Í ˙Í ˙Î ˚Í ˙
Í ˙
È ˘Í ˙
Í ˙Í ˙Î ˚Í ˙

Í ˙
Í ˙
È ˘Í ˙
Í ˙Í ˙Î ˚Î ˚



x

x

x

  (A.26)

Consider now a scalar function defined as
 s = lTf(x, u, p) (A.27)
  = l1 f1(x, u, p) + l2 f2(x, u, p) + ◊ +  lm fm(x, u, p) (A.28)
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Let us find .s∂
∂l

 According to Eq. (A.24), we can write

 
s∂

∂l
 = 

1

2

( , , )
( , , )

( , , )m

f
f

f

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚



x u p
x u p

x u p

 = f (x, u, p) (A.29)

Let us now find s∂
∂ x

. According to Eq. (A.24), we can write

  

1 2
1 2

1 1 11

1 2
1 2

2 2 2 2

1 2
1 2

m
m

m
m

m
m

n n n n

ff fs
x x xx

ff fs
s x x x x

s ff f
x x x x

∂∂ ∂∂ l l l
∂ ∂ ∂∂

∂∂ ∂∂
l l l∂ ∂ ∂ ∂ ∂

∂

∂ ∂∂ ∂
l l l

∂ ∂ ∂ ∂

È ˘È ˘ + +º+Í ˙Í ˙
Í ˙Í ˙
Í ˙Í ˙

+ +º+Í ˙Í ˙= = Í ˙Í ˙
Í ˙Í ˙ ºººººººººººººº
Í ˙Í ˙
Í ˙Í ˙ + +º+Í ˙Í ˙Î ˚ Î ˚



x

  

1 2

11 1 1

1 2

22 2 2

1 2

m

m

m n
n n n

ff f
x x x

ff f
s x x x

ff f
x x x

∂∂ ∂
l∂ ∂ ∂

∂∂ ∂
∂ l∂ ∂ ∂
∂

∂∂ ∂ l
∂ ∂ ∂

È ˘º È ˘Í ˙
Í ˙Í ˙
Í ˙Í ˙
Í ˙ºÍ ˙= Í ˙Í ˙
Í ˙Í ˙ºººººººººº Í ˙Í ˙
Í ˙Í ˙º Í ˙Î ˚Í ˙Î ˚



x

  = 
T∂ l

∂
È ˘
Í ˙Î ˚

f
x

 (A.30)
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