McGraw-Hill OnlineMcGraw-Hill Higher EducationLearning Center
Student Center | Instructor Center | information Center | Home
Biology Case Studies
Bioethics Case Studies
Global Issues Maps
Johnson Explorations
Essential Study Partner
Web Links
BioCourse.com
eLearning
Key Term Flashcards
Testing Your Knowledge
Thinking Scientifically
Art Quizzes
Chapter Quiz
Feedback
Help Center


Lewis Life 4e
Life, 4/e
Ricki Lewis, University of New York at Albany
Mariƫlle Hoefnagels, University of Oklahoma
Douglas Gaffin, University of Oklahoma
Bruce Parker, Utah Valley State College

Evidence for Evolution

eLearning

17.1 Reconstructing the Stories of Life

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::ESP Activity::/sites/dl/free/0070271348/27404/go_esp.jpg','popWin', 'width=105,height=44,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif">ESP Activity (1.0K)</a>ESP Activity

1. Evidence for evolutionary relationships comes from paleontology (the study of past life) and comparing anatomical and biochemical characteristics of species.

2. Systematics examines species relationships. Cladograms, based on derived characters, have largely replaced evolutionary tree diagrams based on less objective physical similarities.

17.2 What Can Fossils Reveal?

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::ESP Activity::/sites/dl/free/0070271348/27404/go_esp.jpg','popWin', 'width=105,height=44,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif">ESP Activity (1.0K)</a>ESP Activity<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::ESP Activity::/sites/dl/free/0070271348/27404/go_esp.jpg','popWin', 'width=105,height=44,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif">ESP Activity (1.0K)</a>ESP Activity<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::ESP Activity::/sites/dl/free/0070271348/27404/go_esp.jpg','popWin', 'width=105,height=44,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif">ESP Activity (1.0K)</a>ESP Activity

3. Fossils can provide information on individual organisms, on a particular locale, or on global changes.

4. A fossil may form when mineral replaces tissue gradually or after a sudden catastrophe, or may be indirect evidence such as footprints.

5. In petrifaction, minerals replace living tissue. Phosphatization is a form of petrifaction that replaces very small structures with calcium phosphate.

6. Fossil age is estimated in relative and absolute terms. The rock layer a fossil is in provides a relative date. The ratio of a stable radioactive isotope to its breakdown product gives an absolute date, which is a more precise range of time when an organism lived. This is a type of radiometric dating.

17.3 Comparing Structures

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::ESP Activity::/sites/dl/free/0070271348/27404/go_esp.jpg','popWin', 'width=105,height=44,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif">ESP Activity (1.0K)</a>ESP Activity

7. Homologous structures are inherited from a shared ancestor, are made of the same materials, but may differ in function. Analogous structures are similar in function due to convergent evolution.

8. Vestigial structures and similar embryonic structures in different species reflect actions of genes retained from ancestors.

17.4 What Can Molecular Evidence Reveal?

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::Animation::/sites/dl/free/0070271348/27404/go_movie.jpg','popWin', 'width=105,height=44,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif">Animation (1.0K)</a>Animation

9. Molecular evolution considers similarities and differences among sequences of chromosome bands, a protein’s amino acids, a gene’s DNA bases, or genomes. Presumably, these sequences contain so many bits of information that it is unlikely that similarities happened by chance. More likely is descent from a shared ancestor.

10. Similar chromosome band patterns may not reflect similarity at the gene level. DNA probes can reveal synteny, or corresponding sections. Many genes and proteins are highly conserved.

11. A molecular clock estimates the time when two species diverged from a common ancestor by comparing DNA or protein sequences. Molecular clocks based on mitochondrial DNA are used to date recent events because this DNA mutates faster than nuclear DNA.