McGraw-Hill OnlineMcGraw-Hill Higher EducationLearning Center
Student Center | Instructor Center | Information Center | Home
NetTutor
Exploring Physical Science
Interactive Periodic Table
Web Links
Message Board
Career Opportunities
Chapter Outline
Chapter Overview
Multiple Choice Quiz 1
Multiple Choice Quiz 2
True or False
Essay Quiz
Exercises
Flash Cards
Matching
Crossword Puzzles
Questions
Tutorial Tests
Animations
Feedback
Help Center


Physical Science, 5/e
Bill Tillery, Arizona State University

Compounds and Chemical Change

Chapter 11 Overview


In the previous two chapters, you learned how the modern atomic theory is used to describe the structures of atoms of different elements. The electron structures of different atoms successfully account for the position of elements in the periodic table as well as for groups of elements with similar properties. On a large scale, all metals were found to have a similarity in electron structure, as were nonmetals. On a smaller scale, chemical families such as the alkali metals were found to have the same outer electron configurations. Thus, the modern atomic theory accounts for observed similarities between elements in terms of atomic structure.

So far, only individual, isolated atoms have been discussed; we have not considered how atoms of elements join together to produce compounds. There is a relationship between the electron structure of atoms and the reactions they undergo to produce specific compounds. Understanding this relationship will explain the changes that matter itself undergoes. For example, hydrogen is a highly flammable, gaseous element that burns with an explosive reaction. Oxygen, on the other hand, is a gaseous element that supports burning. As you know, hydrogen and oxygen combine to form water. Water is a liquid that neither burns nor supports burning. What happens when atoms of elements such as hydrogen and oxygen join to form molecules such as water? Why do such atoms join and why do they stay together? Why does water have different properties from the elements that combine to produce it? And finally, why is water H2O and not H3O or H4O?

Answers to questions about why and how atoms join together in certain numbers are provided by considering the electronic structures of the atoms. Chemical substances are formed from the interactions of electrons as their structures merge, forming new patterns that result in molecules with new properties (Figure 11.1). It is the new electron pattern of the water molecule that gives water different properties than the oxygen or hydrogen from which it formed. Understanding how electron structures of atoms merge to form new patterns is understanding the changes that matter itself undergoes, the topic of this chapter.