McGraw-Hill OnlineMcGraw-Hill Higher EducationLearning Center
Instructor Center | Information Center | Home
Sample Chapter
About the Authors
Table of Contents
Preface
Overview
Feature Summary
Primis Online
PageOut
Feedback
Help Center


Design and Simulation of Thermal Systems
N. V. Suryanarayana, Michigan Tech University
Oner Arici, Michigan Tech University


Table of Contents

Preface     viii

Suggestions to Instructors     x

Nomenclature     xii

PART 1
Basic Principles, Methodology in Design, and Ethics     1

Chapter 1
Introduction     3

1.1   Definition of Design     4
1.2   Design is a Team Effort     4
1.3   Design in the Classroom     5
1.4   Difference Between Design and Analysis     6
1.5   Origin of Design     6
1.6   Classification of Design     8
1.7   Organization of the Book     9
1.8   Sources of Information     11

Chapter 2
Design Methodology     13

2.1   Steps in Design     14
2.2   Project Documentation     22
2.3   Beyond Thermodynamics, Fluid Mechanics, and Heat Transfer     23
2.4   Computer Usage in Design     23

Chapter 3
Engineering Ethics     25

3.1   Engineering Ethics and Codes     27
        3.1.1 Issues in Engineering Ethics     29
3.2   Codes of Engineering Ethics     36
        National Society of Professional Engineers (NSPE)     36
        Code of Ethics for Engineers     36
        Statement by NSPE Executive Committee     42

        American Institute of Chemical Engineers (AIChE)     43
        Professional Ethics     43
        Code of Ethics     44

        Institute of Electrical and Electronics Engineers (IEEE)     44
        Code of Ethics     44
        American Society of Civil Engineers (ASCE)     45
        ASCE Code of Ethics     45
        ASCE Guidelines to Practice under the Fundamental Canons of Ethics     46

        American Society of Mechanical Engineers (ASME)     50
        Code of Ethics of Engineers     50
        Society Policy     50
        The ASME Criteria for Interpretation of the Canons     50
        Accreditation Board for Engineering and Technology (ABET)     54
        Code of Ethics of Engineers     54

PART 2
Review of Thermodynamics, Fluid Mechanics, and Heat Transfer     57

Chapter 4
Review of Thermodynamics     59

4.1   Work and Heat Transfer     61
        4.1.1 Work Transfer     61
        4.1.2 Boundary Movement Work Transfer Due to Pressure Forces     61
        4.1.3 Temperature     62

4.2   Ideal and Real Gases and Incompressible Substances     62
4.3   Conservation of Mass     63
4.4   First Law of Thermodynamics     63
        4.4.1 Internal Energy (U, u)     63
        4.4.2 Uniform State, Uniform Flow Process     64
        4.4.3 Specific Internal Energy and Enthalpy of Ideal Gases and Constant-Density Substances     64
        4.4.4 Changes in Internal Energies and Enthalpies of Ideal Gases     65
        4.4.5 Changes in Internal Energies and Enthalpies of Incompressible Substances     66
        4.4.6 Internal Energy and Enthalpy of Subcooled (Compressed) Liquid     66

4.5   Second Law of Thermodynamics     66
        4.5.1 Carnot Cycle     67
        4.5.2 Entropy of Constant-DensitySubstance     69
        4.5.3 Entropy of a Saturated Mixture     70
        4.5.4 Entropy Change of an Ideal Gas     70
        4.5.5 Isentropic Process of an Ideal Gas with Constant Specific Heats     71
        4.5.6 Reversible, Polytropic Process of an Ideal Gas     72

4.6   Ideal Gas Mixtures     72
        4.6.1 Dalton's Model     73
        4.6.2 Amagat's Model     73
        4.6.3 Increase in Entropy Due to Mixing of Ideal Gases     74
        4.6.4 Specific Heats of Ideal Gas Mixtures     74
        4.6.5 Air-Water Vapor Mixture as an Ideal Gas Mixture     75
        4.6.6 First Law for Air-Vapor Mixtures     76

4.7   Application of First Law to Reacting Systems     78
        4.7.1 Enthalpy of Formation     78
        4.7.2 Enthalpy and Internal Energy of Combustion and Heat of Reaction     79
        4.7.3 Adiabatic Flame Temperature     80
        4.7.4 Application of the Second Law of Thermodynamics     80

4.8   Irreversibility and Availability (Exergy)     81
        4.8.1 Maximum Reversible Work and Irreversibility     81
        4.8.2 Availability (Exergy)     83

Chapter 5
Review of Fluid Mechanics     86

5.1   Pressure Variation in a Static Fluid     88
5.2   Forces on Submerged Surfaces     89
        5.2.1 Forces on Curved Submerged Surfaces     90
        5.2.2 Buoyancy     90
        5.2.3 Bernoulli's Equation     91
        5.2.4 Flow Measurement with a Venturimeter     91

5.3   Conservation of Mass (Control Volume)     92
5.4   Conservation of Linear Momentum     92
5.5   Conservation of Angular Momentum     92
5.6   Dimensional Analysis     93
        5.6.1 Power Product Method     93
        5.6.2 Pi-Theorem     95
        5.6.3 Modeling     96

5.7   External Flows     96
        5.7.1 Flow Parallel to a Flat Plate     96
        5.7.2 Tube Banks     98

5.8   Internal Flows     99
        5.8.1 Minor Losses     102
5.9   Compressible Flows     103
        5.9.1 Adiabatic, Reversible Flow with Area Change     104
        5.9.2 Shock Waves     108

Chapter 6
Heat Transfer     111

6.1   Conduction     112
        6.1.1 Slab of Constant Cross-Sectional Area     112
        6.1.2 Hollow Cylinder     112
        6.1.3 Hollow Sphere     113
        6.1.4 Thermal Circuit (Electrical Analogy)     114
        6.1.5 Temperature-Dependent Thermal Conductivity     115
        6.1.6 One-Dimensional, Steady Temperature Distribution with Uniform Internal Energy Generation     117
        6.1.7 Conduction Shape Factor     118
        6.1.8 Extended Surfaces     118
        6.1.9 Transient Conduction—Lumped Analysis (Uniform but Unsteady Temperature)     121
        6.1.10 One-Dimensional, Unsteady Temperature with Convective Heat Transfer ()     121
        6.1.11 Use of One-Dimensional Transient Temperature Charts for the Solution of Multidimensional Transient Temperature Problems     122

6.2   Convection     124
        6.2.1 Forced Convection—External Flows     124
        6.2.2 Heat Transfer Correlations     125
        6.2.3 Forced Convection—Internal Flows     127
        6.2.4 Total Heat Transfer Rate     129
        6.2.5 Convective Heat Transfer from Tube Banks     130
        6.2.6 Natural Convection     131

6.3   Heat Transfer with Change of Phase     133
        6.3.1 Boiling     133
        6.3.2 Pool Boiling Correlations     134
        6.3.3 Film Boiling Correlations     136
        6.3.4 Forced Convection Boiling     137
        6.3.5 Condensation     139

6.4   Radiation     142
        6.4.1 Radiative Heat Transfer among Gray, Opaque, and Diffuse Surfaces     147
        6.4.2 Gaseous Radiation     150

6.5   Heat Exchangers     151
        6.5.1 Overall Heat Transfer Coefficient     154
        6.5.2 Analysis of Heat Exchangers     155
        6.5.3 LMTD Method     157
        6.5.4 NTU–"d Method     158

Chapter 7
Application of Thermodynamics, Fluid Mechanics, and Heat Transfer     161

7.1   Emptying a Compressed-Air Tank     161
7.2   Cooling and Heating of Moist Air     162
7.3   Air Flow in a Nozzle     164
7.4   Jet Impingement on a Curved Blade     165
7.5   Heat Transfer from a Cylindrical Fin     167
7.6   Internal Flow—Uniform Heat Flux     169
7.7   Radiative Heat Transfer Inside a Hollow Cylinder     169
7.8   Heating Water with Condensing Steam     171
Problems     173

PART 3
System Identification and Description, Component and System Design, and Simulation     179

Chapter 8
System Identification and Description and Component Design     181

8.1   System Identification and Description     182
8.2   Power Plants     182
        8.2.1 Steam Turbine Power Plant with Steam from a Boiler Burning Coal, Oil, or Gas     182
        8.2.2 Steam Turbine Power Plant with Steam Generated in a Nuclear Reactor     185
        8.2.3 Diesel Engine Power Plant     185
        8.2.4 Gas Turbine Power Plant     187
        8.2.5 Other Systems     189

8.3   Refrigeration Plant     189
        8.3.1 Compression Refrigeration System     189
        8.3.2 Absorption Refrigeration System     191
        8.3.3 Cryogenics     193

8.4   Heating, Ventilating, and Air-Conditioning (HVAC) Systems     194
8.5   Pump-Pipe Network     194
8.6   Thermal System in Transport Vehicles     194
        Component Design     195
8.7   Condenser     195
        8.7.1 Develop Preliminary Specifications and Constraints     195
        8.7.2 Develop Detailed Specifications and Concept     195
        8.7.3 Detailed Design     196

8.8   Electric Space Heater     203
        8.8.1 Preliminary Specifications     203
        8.8.2 Develop More Detailed Specifications     203
        8.8.3 Develop Concepts     203
        8.8.4 Detailed Design     205

8.9   Wind Tunnel     218
        8.9.1 Preliminary Specifications     218
        8.9.2 Develop More Detailed Specifications     218
        8.9.3 Develop Concept     219
        8.9.4 Detailed Design     220
        8.9.5 Boundary Layer Thickness in the Test Section     220
        8.9.6 Flow-Straightening Screen     221
        8.9.7 Conclusions     224
        8.9.8 Final Design     225

Problems     226

Chapter 9
System Design     229

9.1   Design of an Experimental Apparatus for Testing an Energy Recovery System     230
        9.1.1 Design Specifications     230
        9.1.2 Develop Concept     231
        9.1.3 Develop Detailed Specifications     232
        9.1.4 Design Details of the Elements     232
        9.1.5 Instrumentation     243
        9.1.6 Cost Estimate     243

9.2   Design of a Solar-Assisted Water Heating System (SAWHS)     244
        9.2.1 Develop Preliminary Specifications and Constraints     245
        9.2.2 Develop Concept     245
        9.2.3 Detailed Design for Feasibility Study     248
        9.2.4 Storage Tank Capacity and Heater Power Requirement     250
        9.2.5 Water Heating Load     252
        9.2.6 Hot Water Supply Network     253
        9.2.7 Climate Data     253
        9.2.8 The f-Chart Method     253
        9.2.9 Economic Analysis     257
        9.2.10 Final Design     257
        9.2.11 Simulation     257
        9.2.12 Conclusions     258

9.3   Design of Pipe Network     258
        9.3.1 Develop Specifications and Concept     258
        9.3.2 Develop Detailed Specifications andConstraints     261
        9.3.3 Friction Pressure Drop     265
        9.3.4 Parametric Studies     268
        9.3.5 Conclusions     269

9.4   Design of a 20 000-kW Diesel Engine Power Plant for a Remote Area     269
        9.4.1 Design of Diesel Engine Power Plant     270
        9.4.2 Preliminary Specifications     270
        9.4.3 Develop More Detailed Specifications     270
        9.4.4 Develop Concept     271
        9.4.5 Detailed Design     272
        9.4.6 Main Engines     272
        9.4.7 Main Engine Auxiliaries     274
        9.4.8 List of Major Equipment     287

Problems     288

Chapter 10
Simulation     294

10.1  Mathematical Techniques     297
         10.1.1 Solution to Nonlinear Algebraic Equations     297
         10.1.2 Curve Fitting     300

10.2  Pump-Single-Pipe System     304
         10.2.1 Graphical Method     305
         10.2.2 Solution with Equations     306

10.3  Pump-Two-Pipe System     307
10.4  Turbine-Condenser System     309
Problems     314

PART 4
Engineering Economics     321

Chapter 11
Engineering Economics     323

11.1  Interest     325
         11.1.1 Simple Interest     326
         11.1.2 Compound Interest     326

11.2  Interest Formulas     326
11.3  Effective Interest Rate     327
11.4  Cash Flow Diagrams     328
11.5  Worth of Money     329
         11.5.1 Present Worth     330
         11.5.2 Future Worth     330

11.6  Schedule of Payments     331
         11.6.1 Future Worth of Uniform Series     331
         11.6.2 Present Worth of Uniform Series     332
         11.6.3 Cash Flow Series with Uniform andGeometric Gradient Series     337

11.7  Effect of Inflation on the Worth of Money     338
11.8  Sinking Fund     338
11.9  Payback Period     338
11.10 Depreciation     339
11.11 Project Worth Analysis     339
Problems     345

PART 5
Presentation of Results     349

Chapter 12
Written and Oral Reports     351

12.1  Guidelines for Writing Reports     352
         12.1.1 Know Your Audience     352
         12.1.2 Planning the Report     353
         12.1.3 Style and Format     353
         12.1.4 Writing with Computers     358

12.2  Memo     359
12.3  Letter     359
12.4  Formal Reports     360
12.5  Front Matter     360
         12.5.1 Letter of Transmittal     361
         12.5.2 Executive Summary     361
         12.5.3 Title Page     361
         12.5.4 Table of Contents     362

12.6  Body of the Report     362
         12.6.1 Introduction     364
         12.6.2 Design Charge     364
         12.6.3 Design Methodology     364
         12.6.4 Results and Discussion     365
         12.6.5 Final Recommendation     365
         12.6.6 Nomenclature     365

12.7  References     365
12.8  Appendices     366
12.9  Example of a Report     366
12.10 Guidelines for Oral Presentation     379
12.11 Preparation     379
12.12 Visual Aids     380
12.13 Speaking     381

PART 6
Appendixes     385

Appendix A
Tables, Figures, and Charts     387

Appendix B
Introduction to EES     511

INDEX     523