Site MapHelpFeedbackLearning Objectives
Learning Objectives
(See related pages)

Concepts and Skills to Review

  • conservation laws (Section 6.1)
  • Newton's third law of motion (Section 2.5)
  • Newton's second law of motion (Section 3.3)
  • velocity (Section 3.2)
  • components of vectors (Section 2.3)
  • vector subtraction (Section 3.1)
  • kinetic energy (Section 6.3)
Mastering the Concepts

  • Definition of linear momentum:
  • <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663815/ch7_1.JPG','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

  • During an interaction, momentum is transferred from one body to another, but the total momentum of the two is unchanged.
  • <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663815/ch7_2.JPG','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

  • Impulse is the average force times the time interval.
  • The total impulse equals the change in momentum:
  • <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663815/ch7_3.JPG','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

  • A conserved quantity is one that remains unchanged as time passes.
  • Impulse is the area under a graph of force versus time.
  • The net force is the rate of change of momentum.
  • <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663815/ch7_4.JPG','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

  • External interactions may change the total momentum of a system.
  • Internal interactions do not change the total momentum of a system.
  • Conservation of linear momentum: if the net external force acting on a system is zero, then the momentum of the system is conserved.
  • The position of the CM of a system of N particles is
  • <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663815/ch7_5.JPG','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (4.0K)</a>
    where M is the total mass of the particles:
    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663815/ch7_6.JPG','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

  • The total momentum of a system is equal to the total mass times the velocity of the center of mass:
  • <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663815/ch7_7.JPG','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (2.0K)</a>

  • No matter how complicated a system is, the CM moves as if all the mass of the system were concentrated to a point particle with all the external forces acting on it:
  • <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663815/ch7_8.JPG','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

  • The CM of an isolated system moves at constant velocity.
  • Conservation of momentum is used to solve problems involving collisions, explosions, and the like. Even when external forces are acting, the momentum of the system just before a collision is nearly equal to the momentum just after if the collision interaction is brief. The impulse, and, therefore, the change in momentum of the system, is small since the time interval is small.







GiambattistaOnline Learning Center

Home > Chapter 7 > Learning Objectives