![](/olcweb/styles/shared/spacer.gif) |
1 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) The peripheral nervous system includes the |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | somatic nervous system. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | brain. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | spinal cord. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | nuclei. |
| ![](/olcweb/styles/shared/spacer.gif) | E)![](/olcweb/styles/shared/spacer.gif) | all of the above. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
2 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) The part of the nervous system that controls smooth muscle, cardiac muscle, and glands is the |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | somatic nervous system. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | autonomic nervous system. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | skeletal division. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | sensory division. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
3 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Neurons have cytoplasmic extensions that connect one neuron to another neuron. Given these structures:
1. axon
2. dendrite
3. dendritic spine
4. presynaptic terminal
Choose the arrangement that lists the structures in the order they are found between two neurons. |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | 1,4,2,3 |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | 1,4,3,2 |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | 4,1,2,3 |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | 4,1,3,2 |
| ![](/olcweb/styles/shared/spacer.gif) | E)![](/olcweb/styles/shared/spacer.gif) | 4,3,2,1 |
|
|
![](/olcweb/styles/shared/spacer.gif) |
4 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) A neuron with many short dendrites and a single long axon is a ______________ neuron. |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | multipolar |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | unipolar |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | bipolar |
|
|
![](/olcweb/styles/shared/spacer.gif) |
5 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Motor neurons and interneurons are ______________ neurons. |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | unipolar |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | bipolar |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | multipolar |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | afferent |
|
|
![](/olcweb/styles/shared/spacer.gif) |
6 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Cells found in the choroid plexuses that secrete cerebrospinal fluid are |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | astrocytes. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | microglia. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | ependymal cells. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | oligodendrocytes. |
| ![](/olcweb/styles/shared/spacer.gif) | E)![](/olcweb/styles/shared/spacer.gif) | Schwann cells. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
7 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Neuroglia that are phagocytic within the central nervous system are |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | oligodendrocytes. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | microglia. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | ependymal cells. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | astrocytes. |
| ![](/olcweb/styles/shared/spacer.gif) | E)![](/olcweb/styles/shared/spacer.gif) | Schwann cells. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
8 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Unmyelinated axons within nerves may have which of these associated with them? |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | Schwann cells |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | nodes of Ranvier |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | oligodendrocytes |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | both B and C |
|
|
![](/olcweb/styles/shared/spacer.gif) |
9 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Action potentials are conducted more rapidly |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | in small-diameter axons than in large-diameter axons. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | in unmyelinated axons than in myelinated axons. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | along axons that have nodes of Ranvier. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | all of the above. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
10 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Clusters of nerve cell bodies within the peripheral nervous system are |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | ganglia. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | fascicles. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | nuclei. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | laminae. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
11 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Gray matter contains primarily |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | myelinated fibers. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | neuron cell bodies. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | Schwann cells. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | oligodendrocytes. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
12 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Concerning concentration difference across the plasma membrane, there are |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | more K+ and Na outside the cell than inside. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | more K+ and Na inside the cell than outside. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | more K+ outside the cell than inside and more Na+ inside the cell than outside. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | more K+ inside the cell than outside and more Na+ outside the cell than inside. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
13 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Compared to the inside of the resting plasma membrane, the outside surface of the membrane is |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | positively charged. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | electrically neutral. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | negatively charged. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | continuously reversing so that it is positive one second and negative the next. |
| ![](/olcweb/styles/shared/spacer.gif) | E)![](/olcweb/styles/shared/spacer.gif) | negatively charged whenever the Na+ –K+ pump is operating. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
14 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Nongated ion channels |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | open in response to small voltage changes. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | open when a ligand binds to its receptor. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | are responsible for the ion permeability of the resting plasma membrane. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | allow substances to move into the cell but not out. |
| ![](/olcweb/styles/shared/spacer.gif) | E)![](/olcweb/styles/shared/spacer.gif) | all of the above. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
15 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) The resting membrane potential results when the tendency for _____________ to diffuse out of the cell is balanced by their attraction to opposite charges inside the cell. |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | Na+ |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | K+ |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | Cl- |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | negatively charged proteins |
|
|
![](/olcweb/styles/shared/spacer.gif) |
16 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) If the permeability of the plasma membrane to K+ increases, resting membrane potential _____________. This is called _____________. |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | increases, hyperpolarization |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | increases, depolarization |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | decreases, hyperpolarization |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | decreases, depolarization |
|
|
![](/olcweb/styles/shared/spacer.gif) |
17 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Decreasing the extracellular concentration of K+ affects the resting membrane potential by causing |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | hyperpolarization. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | depolarization. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | no change. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
18 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Which of these terms are correctly matched with their definition or description? |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | depolarization: membrane potential becomes more negative |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | hyperpolarization: membrane potential becomes more negative |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | hypopolarization: membrane potential becomes more negative |
|
|
![](/olcweb/styles/shared/spacer.gif) |
19 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Which of these statements about ion movement through the plasma membrane is true? |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | Movement of Na+ out of the cell requires energy (ATP). |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | When Ca2+ binds to proteins in ion channels, the diffusion of Na+ into the cell is inhibited. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | There are specific ion channels that regulate the diffusion of Na+ through the plasma membrane. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | All of the above. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
20 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) The major function of the Na+ –K+ pump is to |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | pump Na+ into and K+ out of the cell. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | generate the resting membrane potential. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | maintain the concentration gradients of Na+ and K+ across the plasma membrane. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | oppose any tendency of the cell to undergo hyperpolarization. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
21 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Local potentials |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | spread over the plasma membrane in decremental fashion. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | are not propagated for long distances. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | are graded. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | can summate. |
| ![](/olcweb/styles/shared/spacer.gif) | E)![](/olcweb/styles/shared/spacer.gif) | all of the above. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
22 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) During the depolarization phase of an action potential, the permeability of the membrane |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | to K+ is greatly increased. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | to Na+ is greatly increased. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | to Ca2+ is greatly increased. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | is unchanged. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
23 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) During repolarization of the plasma membrane, |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | Na+ diffuse into the cell. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | Na+ diffuse out of the cell. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | K+ diffuse into the cell. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | K+ diffuse out of the cell. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
24 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) The absolute refractory period |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | limits how many action potentials can be produced during a given period of time. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | prevents an action potential from starting another action potential at the same point on the plasma membrane. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | is the period of time when a strong stimulus can initiate a second action potential. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | both a and b. |
| ![](/olcweb/styles/shared/spacer.gif) | E)![](/olcweb/styles/shared/spacer.gif) | all of the above. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
25 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) A subthreshold stimulus |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | produces an afterpotential. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | produces a local potential. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | causes an all-or-none response. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | produces more action potentials than a submaximal stimulus. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
26 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Neurotransmitter substances are stored in vesicles that are located in specialized portions of the |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | neuron cell body. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | axon. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | dendrite. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | postsynaptic membrane. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
27 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) In a chemical synapse, |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | action potentials in the presynaptic terminal cause voltage-gated Ca2+ channels to open. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | neurotransmitters can cause ligand-gated Na+ channels to open. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | neurotransmitters can be broken down by enzymes. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | neurotransmitters can be taken up by the presynaptic terminal. |
| ![](/olcweb/styles/shared/spacer.gif) | E)![](/olcweb/styles/shared/spacer.gif) | all of the above. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
28 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) An inhibitory presynaptic neuron can affect a postsynaptic neuron by |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | producing an IPSP in the postsynaptic neuron. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | hyperpolarizing the plasma membrane of the postsynaptic neuron. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | causing K+ to diffuse out of the postsynaptic neuron. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | causing Cl- to diffuse into the postsynaptic neuron. |
| ![](/olcweb/styles/shared/spacer.gif) | E)![](/olcweb/styles/shared/spacer.gif) | all of the above. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
29 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) Summation |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | is caused by combining two or more local potentials. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | occurs at the trigger zone of the postsynaptic neuron. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | results in an action potential if it reaches the threshold potential. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | can occur when two action potentials arrive in close succession at a single presynaptic terminal. |
| ![](/olcweb/styles/shared/spacer.gif) | E)![](/olcweb/styles/shared/spacer.gif) | all of the above. |
|
|
![](/olcweb/styles/shared/spacer.gif) |
30 | ![](/olcweb/styles/shared/spacer.gif) | ![](/olcweb/styles/shared/spacer.gif) In convergent pathways, |
| ![](/olcweb/styles/shared/spacer.gif) | A)![](/olcweb/styles/shared/spacer.gif) | the response of the postsynaptic neuron depends on the summation of EPSPs and IPSPs. |
| ![](/olcweb/styles/shared/spacer.gif) | B)![](/olcweb/styles/shared/spacer.gif) | a smaller number of presynaptic neurons synapse with a larger number of postsynaptic neurons. |
| ![](/olcweb/styles/shared/spacer.gif) | C)![](/olcweb/styles/shared/spacer.gif) | information transmitted in one neuronal pathway can go into two or more pathways. |
| ![](/olcweb/styles/shared/spacer.gif) | D)![](/olcweb/styles/shared/spacer.gif) | all of the above. |
|
|